2D_profile / README.md
fabiencasenave's picture
Update README.md
d2b58f1 verified
|
raw
history blame
8.06 kB
metadata
license: cc-by-sa-4.0
size_categories:
  - n<1K
task_categories:
  - graph-ml
pretty_name: 2D external aero CFD RANS datasets, under geometrical variations
tags:
  - physics learning
  - geometry learning
configs:
  - config_name: default
    data_files:
      - split: all_samples
        path: data/all_samples-*
dataset_info:
  description:
    legal:
      owner: Safran
      license: CC-by-SA 4.0
    data_production:
      type: simulation
      physics: 2D stationary RANS
      simulator: elsA
    split:
      train:
        - 0
        - 1
        - 2
        - 3
        - 4
        - 5
        - 6
        - 7
        - 8
        - 9
        - 10
        - 11
        - 12
        - 13
        - 14
        - 15
        - 16
        - 17
        - 18
        - 19
        - 20
        - 21
        - 22
        - 23
        - 24
        - 25
        - 26
        - 27
        - 28
        - 29
        - 30
        - 31
        - 32
        - 33
        - 34
        - 35
        - 36
        - 37
        - 38
        - 39
        - 40
        - 41
        - 42
        - 43
        - 44
        - 45
        - 46
        - 47
        - 48
        - 49
        - 50
        - 51
        - 52
        - 53
        - 54
        - 55
        - 56
        - 57
        - 58
        - 59
        - 60
        - 61
        - 62
        - 63
        - 64
        - 65
        - 66
        - 67
        - 68
        - 69
        - 70
        - 71
        - 72
        - 73
        - 74
        - 75
        - 76
        - 77
        - 78
        - 79
        - 80
        - 81
        - 82
        - 83
        - 84
        - 85
        - 86
        - 87
        - 88
        - 89
        - 90
        - 91
        - 92
        - 93
        - 94
        - 95
        - 96
        - 97
        - 98
        - 99
        - 100
        - 101
        - 102
        - 103
        - 104
        - 105
        - 106
        - 107
        - 108
        - 109
        - 110
        - 111
        - 112
        - 113
        - 114
        - 115
        - 116
        - 117
        - 118
        - 119
        - 120
        - 121
        - 122
        - 123
        - 124
        - 125
        - 126
        - 127
        - 128
        - 129
        - 130
        - 131
        - 132
        - 133
        - 134
        - 135
        - 136
        - 137
        - 138
        - 139
        - 140
        - 141
        - 142
        - 143
        - 144
        - 145
        - 146
        - 147
        - 148
        - 149
        - 150
        - 151
        - 152
        - 153
        - 154
        - 155
        - 156
        - 157
        - 158
        - 159
        - 160
        - 161
        - 162
        - 163
        - 164
        - 165
        - 166
        - 167
        - 168
        - 169
        - 170
        - 171
        - 172
        - 173
        - 174
        - 175
        - 176
        - 177
        - 178
        - 179
        - 180
        - 181
        - 182
        - 183
        - 184
        - 185
        - 186
        - 187
        - 188
        - 189
        - 190
        - 191
        - 192
        - 193
        - 194
        - 195
        - 196
        - 197
        - 198
        - 199
        - 200
        - 201
        - 202
        - 203
        - 204
        - 205
        - 206
        - 207
        - 208
        - 209
        - 210
        - 211
        - 212
        - 213
        - 214
        - 215
        - 216
        - 217
        - 218
        - 219
        - 220
        - 221
        - 222
        - 223
        - 224
        - 225
        - 226
        - 227
        - 228
        - 229
        - 230
        - 231
        - 232
        - 233
        - 234
        - 235
        - 236
        - 237
        - 238
        - 239
        - 240
        - 241
        - 242
        - 243
        - 244
        - 245
        - 246
        - 247
        - 248
        - 249
        - 250
        - 251
        - 252
        - 253
        - 254
        - 255
        - 256
        - 257
        - 258
        - 259
        - 260
        - 261
        - 262
        - 263
        - 264
        - 265
        - 266
        - 267
        - 268
        - 269
        - 270
        - 271
        - 272
        - 273
        - 274
        - 275
        - 276
        - 277
        - 278
        - 279
        - 280
        - 281
        - 282
        - 283
        - 284
        - 285
        - 286
        - 287
        - 288
        - 289
        - 290
        - 291
        - 292
        - 293
        - 294
        - 295
        - 296
        - 297
        - 298
        - 299
      test:
        - 300
        - 301
        - 302
        - 303
        - 304
        - 305
        - 306
        - 307
        - 308
        - 309
        - 310
        - 311
        - 312
        - 313
        - 314
        - 315
        - 316
        - 317
        - 318
        - 319
        - 320
        - 321
        - 322
        - 323
        - 324
        - 325
        - 326
        - 327
        - 328
        - 329
        - 330
        - 331
        - 332
        - 333
        - 334
        - 335
        - 336
        - 337
        - 338
        - 339
        - 340
        - 341
        - 342
        - 343
        - 344
        - 345
        - 346
        - 347
        - 348
        - 349
        - 350
        - 351
        - 352
        - 353
        - 354
        - 355
        - 356
        - 357
        - 358
        - 359
        - 360
        - 361
        - 362
        - 363
        - 364
        - 365
        - 366
        - 367
        - 368
        - 369
        - 370
        - 371
        - 372
        - 373
        - 374
        - 375
        - 376
        - 377
        - 378
        - 379
        - 380
        - 381
        - 382
        - 383
        - 384
        - 385
        - 386
        - 387
        - 388
        - 389
        - 390
        - 391
        - 392
        - 393
        - 394
        - 395
        - 396
        - 397
        - 398
        - 399
    task: regression
    in_scalars_names: []
    out_scalars_names: []
    in_timeseries_names: []
    out_timeseries_names: []
    in_fields_names: []
    out_fields_names:
      - Mach
      - Pressure
      - Velocity-x
      - Velocity-y
    in_meshes_names:
      - /Base_2_2/Zone
    out_meshes_names: []
  features:
    - name: sample
      dtype: binary
  splits:
    - name: all_samples
      num_bytes: 1290091704
      num_examples: 400
  download_size: 813895818
  dataset_size: 1290091704

Dataset Card

image/png

This dataset contains a single huggingface split, named 'all_samples'.

The samples contains a single huggingface feature, named called "sample".

Samples are instances of plaid.containers.sample.Sample. Mesh objects included in samples follow the CGNS standard, and can be converted in Muscat.Containers.Mesh.Mesh.

Example of commands:

import pickle
from datasets import load_dataset
from plaid.containers.sample import Sample

# Load the dataset
dataset = load_dataset("chanel/dataset", split="all_samples")

# Get the first sample of the first split
split_names = list(dataset.description["split"].keys())
ids_split_0 = dataset.description["split"][split_names[0]]
sample_0_split_0 = dataset[ids_split_0[0]]["sample"]
plaid_sample = Sample.model_validate(pickle.loads(sample_0_split_0))
print("type(plaid_sample) =", type(plaid_sample))

print("plaid_sample =", plaid_sample)

# Get a field from the sample
field_names = plaid_sample.get_field_names()
field = plaid_sample.get_field(field_names[0])
print("field_names[0] =", field_names[0])

print("field.shape =", field.shape)

# Get the mesh and convert it to Muscat
from Muscat.Bridges import CGNSBridge
CGNS_tree = plaid_sample.get_mesh()
mesh = CGNSBridge.CGNSToMesh(CGNS_tree)
print(mesh)

Dataset Details

Dataset Description

This dataset contains 2D external aero CFD RANS solutions, under geometrical variations (correspond to "large" in the Zenodo repository).

The variablity in the samples is the geometry (mesh). Outputs of interest are 4 fields. Each sample have been computed on large refined meshes, which have been cut close to the profil, and adapted (remeshed) using an anisotropic metric based on the output fields of interest.

Dataset created using the PLAID library and datamodel, version 0.1.

  • Language: PLAID
  • License: cc-by-sa-4.0
  • Owner: Safran

Dataset Sources