Datasets:
Dataset Card for Language Identification Dataset
Dataset Description
- Repository: processvenue/language_identification
- Total Samples: 135784
- Number of Languages: 18
- Splits:
- Train: 104849 samples (70%)
- Validation: 15467 samples (15%)
- Test: 15468 samples (15%)
Dataset Summary
A comprehensive dataset for Indian language identification and text classification. The dataset contains text samples across 18 major Indian languages, making it suitable for developing language identification systems and multilingual NLP applications.
Languages and Distribution
Language Distribution:
1. Punjabi 15075
2. Odia 14258
3. Konkani 14098
4. Hindi 13469
5. Sanskrit 11788
6. Bengali 10036
7. English 9819
8. Sindhi 8838
9. Nepali 8694
10. Marathi 6625
11. Gujarati 3788
12. Telugu 3563
13. Malayalam 3423
14. Tamil 3195
15. Kannada 2651
16. Kashmiri 2282
17. Urdu 2272
18. Assamese 1910
Language Details
- Hindi (hi): Major language of India, written in Devanagari script
- Urdu (ur): Written in Perso-Arabic script
- Bengali (bn): Official language of Bangladesh and several Indian states
- Gujarati (gu): Official language of Gujarat
- Kannada (kn): Official language of Karnataka
- Malayalam (ml): Official language of Kerala
- Marathi (mr): Official language of Maharashtra
- Odia (or): Official language of Odisha
- Punjabi (pa): Official language of Punjab
- Tamil (ta): Official language of Tamil Nadu and Singapore
- Telugu (te): Official language of Telangana and Andhra Pradesh
- Sanskrit (sa): Ancient language of India, written in Devanagari script
- Konkani (kok): Official language of Goa
- Sindhi (sd): Official language of Sindh province in Pakistan
- Nepali (ne): Official language of Nepal
- Assamese (as): Official language of Assam
- Kashmiri (ks): Official language of Jammu and Kashmir
- English (en): Official language of India
Data Fields
Headline
: The input text sampleLanguage
: The language label (one of the 18 languages listed above)
Usage Example
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("processvenue/language_identification")
# Access splits
train_data = dataset['train']
validation_data = dataset['validation']
test_data = dataset['test']
# Example usage
print(f"Sample text: {train_data[0]['Headline']}")
print(f"Language: {train_data[0]['Language']}")
Applications
Language Identification Systems
- Automatic language detection
- Text routing in multilingual systems
- Content filtering by language
Machine Translation
- Language-pair identification
- Translation system selection
Content Analysis
- Multilingual content categorization
- Language-specific content analysis
Citation
If you use this dataset in your research, please cite:
@dataset{language_identification_2025,
author = {ProcessVenue Team},
website = {https://processvenue.com},
title = {Multilingual Headlines Language Identification Dataset},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/processvenue/language-identification},
version = {1.1}
}
###reference
1. @misc{disisbig_news_datasets,
author = {Gaurav},
title = {Indian Language News Datasets},
year = {2019},
publisher = {Kaggle},
url = {https://www.kaggle.com/datasets/disisbig/}
}
2. @misc{bhattarai_nepali_financial_news,
author = {Anuj Bhattarai},
title = {The Nepali Financial News Dataset},
year = {2024},
publisher = {Kaggle},
url = {https://www.kaggle.com/datasets/anujbhatrai/the-nepali-financial-news-dataset}
}
3. @misc{sourav_inshorts_hindi,
author = {Shivam Sourav},
title = {Inshorts-Hindi},
year = {2023},
publisher = {Kaggle},
url = {https://www.kaggle.com/datasets/shivamsourav2002/inshorts-hindi}
}