AVM_Segmentation_train / parse_avm_to_fiftyone.py
harpreetsahota's picture
Upload parse_avm_to_fiftyone.py
744113d verified
#!/usr/bin/env python3
"""
Parse AVM (Around View Monitoring) semantic segmentation dataset into FiftyOne format.
This script converts the AVM dataset with YAML polygon annotations and ground truth
segmentation masks into a FiftyOne dataset, preserving all semantic classes and metadata.
Dataset source: https://github.com/ChulhoonJang/avm_dataset
"""
import os
import yaml
import numpy as np
from typing import Dict, List, Tuple
from PIL import Image
import fiftyone as fo
import fiftyone.core.labels as fol
def load_yaml_annotation(yaml_path: str) -> Dict:
"""Load and parse a YAML annotation file."""
with open(yaml_path, 'r') as f:
content = f.read()
if content.startswith('%YAML'):
content = '\n'.join(content.split('\n')[1:])
return yaml.safe_load(content)
def parse_annotation_to_polylines(annotation: Dict, image_width: int, image_height: int) -> Tuple[List[fol.Polyline], Dict[str, int]]:
"""Convert AVM annotation polygons to FiftyOne Polyline objects."""
polylines = []
class_counts = {}
class_colors = {
'ego_vehicle': '#000000',
'marker': '#FFFFFF',
'vehicle': '#FF0000',
'curb': '#00FF00',
'other': '#00FF00',
'pillar': '#00FF00',
'wall': '#00FF00'
}
for attr in annotation.get('attribute', []):
if attr in annotation:
polygons = annotation[attr]
class_counts[attr] = len(polygons)
for poly_idx, poly_data in enumerate(polygons):
if 'x' in poly_data and 'y' in poly_data:
x_coords = poly_data['x']
y_coords = poly_data['y']
# Normalize coordinates to [0, 1] range
points = [[x / image_width, y / image_height] for x, y in zip(x_coords, y_coords)]
polyline = fol.Polyline(
label=attr,
points=[points],
index=poly_idx,
closed=True,
filled=True,
fillColor=class_colors.get(attr, '#0000FF'),
lineColor=class_colors.get(attr, '#0000FF')
)
polylines.append(polyline)
return polylines, class_counts
def create_segmentation_from_mask(mask: np.ndarray) -> fol.Segmentation:
"""Create a FiftyOne Segmentation object from a ground truth mask."""
color_to_class = {
(0, 0, 255): 0, # Blue - Free space
(255, 255, 255): 1, # White - Marker
(255, 0, 0): 2, # Red - Vehicle
(0, 255, 0): 3, # Green - Other objects
(0, 0, 0): 4 # Black - Ego vehicle
}
height, width = mask.shape[:2]
class_mask = np.zeros((height, width), dtype=np.uint8)
for color, class_id in color_to_class.items():
color_mask = np.all(mask == color, axis=2)
class_mask[color_mask] = class_id
return fol.Segmentation(mask=class_mask)
def parse_train_file(train_file: str, base_dir: str) -> List[Tuple[str, str]]:
"""Parse train_db.txt to get image-mask pairs."""
pairs = []
with open(train_file, 'r') as f:
for line in f:
line = line.strip()
if line:
parts = line.split()
if len(parts) == 2:
image_path = os.path.join(base_dir, parts[0].lstrip('/'))
mask_path = os.path.join(base_dir, parts[1].lstrip('/'))
pairs.append((image_path, mask_path))
return pairs
def extract_metadata_from_filename(filename: str) -> Dict:
"""Extract metadata from the AVM filename."""
base_name = os.path.splitext(filename)[0]
try:
sample_id = int(base_name)
except ValueError:
sample_id = base_name
return {
"sample_id": sample_id,
"filename_base": base_name
}
def determine_environment_and_parking_type(annotation: Dict, sample_id: int) -> Tuple[str, str, str]:
"""Determine environment, parking type, and slot type from annotation."""
has_curb = 'curb' in annotation.get('attribute', [])
has_marker = 'marker' in annotation.get('attribute', [])
environment = "outdoor" if has_curb else "indoor"
parking_type = "perpendicular" # Most common in dataset
slot_type = "closed" if has_marker else "no_marker"
return environment, parking_type, slot_type
def process_avm_dataset(dataset_root: str) -> fo.Dataset:
"""Process the AVM dataset and create a FiftyOne dataset."""
seg_db_dir = os.path.join(dataset_root, "avm_seg_db")
annotations_dir = os.path.join(seg_db_dir, "annotations")
train_file = os.path.join(seg_db_dir, "train_db.txt")
# Create dataset
dataset = fo.Dataset(name="AVM_Segmentation", overwrite=True, persistent=True)
# Add dataset metadata
dataset.info = {
"description": "AVM (Around View Monitoring) System Dataset for Auto Parking - Semantic Segmentation",
"source": "https://github.com/ChulhoonJang/avm_dataset",
"classes": {
"0": {"name": "free_space", "color": [0, 0, 255]},
"1": {"name": "marker", "color": [255, 255, 255]},
"2": {"name": "vehicle", "color": [255, 0, 0]},
"3": {"name": "other", "color": [0, 255, 0]},
"4": {"name": "ego_vehicle", "color": [0, 0, 0]}
},
"image_dimensions": {"width": 320, "height": 160}
}
# Get train pairs
train_pairs = parse_train_file(train_file, seg_db_dir)
samples = []
print(f"Processing {len(train_pairs)} training samples...")
for i, (image_path, mask_path) in enumerate(train_pairs):
filename = os.path.basename(image_path)
base_name = os.path.splitext(filename)[0]
annotation_path = os.path.join(annotations_dir, f"{base_name}.yml")
if not all(os.path.exists(p) for p in [image_path, mask_path, annotation_path]):
continue
# Get image dimensions
with Image.open(image_path) as img:
width, height = img.size
# Load annotation and create polylines
annotation = load_yaml_annotation(annotation_path)
polylines, class_counts = parse_annotation_to_polylines(annotation, width, height)
# Extract metadata
metadata = extract_metadata_from_filename(filename)
environment, parking_type, slot_type = determine_environment_and_parking_type(
annotation, metadata["sample_id"]
)
# Load mask and create segmentation
mask = np.array(Image.open(mask_path))
segmentation = create_segmentation_from_mask(mask)
# Create sample with all metadata
sample = fo.Sample(
filepath=image_path,
split="train",
sample_id=metadata["sample_id"],
environment=fol.Classification(label=environment),
parking_type=fol.Classification(label=parking_type),
slot_type=fol.Classification(label=slot_type),
polygon_annotations=fol.Polylines(polylines=polylines),
classes_present=annotation.get('attribute', []),
num_markers=class_counts.get('marker', 0),
num_vehicles=class_counts.get('vehicle', 0),
has_curb=('curb' in annotation.get('attribute', [])),
has_ego_vehicle=('ego_vehicle' in annotation.get('attribute', [])),
ground_truth=segmentation,
mask_path=mask_path
)
samples.append(sample)
if (i + 1) % 100 == 0:
print(f" Processed {i + 1} samples...")
# Add samples to dataset
dataset.add_samples(samples)
dataset.compute_metadata()
dataset.add_dynamic_sample_fields()
print(f"✅ Dataset created with {len(samples)} samples!")
return dataset
def main():
"""Main function."""
dataset_root = "/Users/harpreetsahota/workspace/avm_dataset"
dataset = process_avm_dataset(dataset_root)
print("Launch FiftyOne app with:")
print(" import fiftyone as fo")
print(" dataset = fo.load_dataset('AVM_Segmentation')")
print(" session = fo.launch_app(dataset)")
if __name__ == "__main__":
main()