Datasets:
Upload parse_avm_to_fiftyone.py
Browse files- parse_avm_to_fiftyone.py +237 -0
parse_avm_to_fiftyone.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Parse AVM (Around View Monitoring) semantic segmentation dataset into FiftyOne format.
|
4 |
+
|
5 |
+
This script converts the AVM dataset with YAML polygon annotations and ground truth
|
6 |
+
segmentation masks into a FiftyOne dataset, preserving all semantic classes and metadata.
|
7 |
+
|
8 |
+
Dataset source: https://github.com/ChulhoonJang/avm_dataset
|
9 |
+
"""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import yaml
|
13 |
+
import numpy as np
|
14 |
+
from typing import Dict, List, Tuple
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
import fiftyone as fo
|
18 |
+
import fiftyone.core.labels as fol
|
19 |
+
|
20 |
+
|
21 |
+
def load_yaml_annotation(yaml_path: str) -> Dict:
|
22 |
+
"""Load and parse a YAML annotation file."""
|
23 |
+
with open(yaml_path, 'r') as f:
|
24 |
+
content = f.read()
|
25 |
+
if content.startswith('%YAML'):
|
26 |
+
content = '\n'.join(content.split('\n')[1:])
|
27 |
+
return yaml.safe_load(content)
|
28 |
+
|
29 |
+
|
30 |
+
def parse_annotation_to_polylines(annotation: Dict, image_width: int, image_height: int) -> Tuple[List[fol.Polyline], Dict[str, int]]:
|
31 |
+
"""Convert AVM annotation polygons to FiftyOne Polyline objects."""
|
32 |
+
polylines = []
|
33 |
+
class_counts = {}
|
34 |
+
|
35 |
+
class_colors = {
|
36 |
+
'ego_vehicle': '#000000',
|
37 |
+
'marker': '#FFFFFF',
|
38 |
+
'vehicle': '#FF0000',
|
39 |
+
'curb': '#00FF00',
|
40 |
+
'other': '#00FF00',
|
41 |
+
'pillar': '#00FF00',
|
42 |
+
'wall': '#00FF00'
|
43 |
+
}
|
44 |
+
|
45 |
+
for attr in annotation.get('attribute', []):
|
46 |
+
if attr in annotation:
|
47 |
+
polygons = annotation[attr]
|
48 |
+
class_counts[attr] = len(polygons)
|
49 |
+
|
50 |
+
for poly_idx, poly_data in enumerate(polygons):
|
51 |
+
if 'x' in poly_data and 'y' in poly_data:
|
52 |
+
x_coords = poly_data['x']
|
53 |
+
y_coords = poly_data['y']
|
54 |
+
|
55 |
+
# Normalize coordinates to [0, 1] range
|
56 |
+
points = [[x / image_width, y / image_height] for x, y in zip(x_coords, y_coords)]
|
57 |
+
|
58 |
+
polyline = fol.Polyline(
|
59 |
+
label=attr,
|
60 |
+
points=[points],
|
61 |
+
index=poly_idx,
|
62 |
+
closed=True,
|
63 |
+
filled=True,
|
64 |
+
fillColor=class_colors.get(attr, '#0000FF'),
|
65 |
+
lineColor=class_colors.get(attr, '#0000FF')
|
66 |
+
)
|
67 |
+
|
68 |
+
polylines.append(polyline)
|
69 |
+
|
70 |
+
return polylines, class_counts
|
71 |
+
|
72 |
+
|
73 |
+
def create_segmentation_from_mask(mask: np.ndarray) -> fol.Segmentation:
|
74 |
+
"""Create a FiftyOne Segmentation object from a ground truth mask."""
|
75 |
+
color_to_class = {
|
76 |
+
(0, 0, 255): 0, # Blue - Free space
|
77 |
+
(255, 255, 255): 1, # White - Marker
|
78 |
+
(255, 0, 0): 2, # Red - Vehicle
|
79 |
+
(0, 255, 0): 3, # Green - Other objects
|
80 |
+
(0, 0, 0): 4 # Black - Ego vehicle
|
81 |
+
}
|
82 |
+
|
83 |
+
height, width = mask.shape[:2]
|
84 |
+
class_mask = np.zeros((height, width), dtype=np.uint8)
|
85 |
+
|
86 |
+
for color, class_id in color_to_class.items():
|
87 |
+
color_mask = np.all(mask == color, axis=2)
|
88 |
+
class_mask[color_mask] = class_id
|
89 |
+
|
90 |
+
return fol.Segmentation(mask=class_mask)
|
91 |
+
|
92 |
+
|
93 |
+
def parse_train_file(train_file: str, base_dir: str) -> List[Tuple[str, str]]:
|
94 |
+
"""Parse train_db.txt to get image-mask pairs."""
|
95 |
+
pairs = []
|
96 |
+
|
97 |
+
with open(train_file, 'r') as f:
|
98 |
+
for line in f:
|
99 |
+
line = line.strip()
|
100 |
+
if line:
|
101 |
+
parts = line.split()
|
102 |
+
if len(parts) == 2:
|
103 |
+
image_path = os.path.join(base_dir, parts[0].lstrip('/'))
|
104 |
+
mask_path = os.path.join(base_dir, parts[1].lstrip('/'))
|
105 |
+
pairs.append((image_path, mask_path))
|
106 |
+
|
107 |
+
return pairs
|
108 |
+
|
109 |
+
|
110 |
+
def extract_metadata_from_filename(filename: str) -> Dict:
|
111 |
+
"""Extract metadata from the AVM filename."""
|
112 |
+
base_name = os.path.splitext(filename)[0]
|
113 |
+
|
114 |
+
try:
|
115 |
+
sample_id = int(base_name)
|
116 |
+
except ValueError:
|
117 |
+
sample_id = base_name
|
118 |
+
|
119 |
+
return {
|
120 |
+
"sample_id": sample_id,
|
121 |
+
"filename_base": base_name
|
122 |
+
}
|
123 |
+
|
124 |
+
|
125 |
+
def determine_environment_and_parking_type(annotation: Dict, sample_id: int) -> Tuple[str, str, str]:
|
126 |
+
"""Determine environment, parking type, and slot type from annotation."""
|
127 |
+
has_curb = 'curb' in annotation.get('attribute', [])
|
128 |
+
has_marker = 'marker' in annotation.get('attribute', [])
|
129 |
+
|
130 |
+
environment = "outdoor" if has_curb else "indoor"
|
131 |
+
parking_type = "perpendicular" # Most common in dataset
|
132 |
+
slot_type = "closed" if has_marker else "no_marker"
|
133 |
+
|
134 |
+
return environment, parking_type, slot_type
|
135 |
+
|
136 |
+
|
137 |
+
def process_avm_dataset(dataset_root: str) -> fo.Dataset:
|
138 |
+
"""Process the AVM dataset and create a FiftyOne dataset."""
|
139 |
+
seg_db_dir = os.path.join(dataset_root, "avm_seg_db")
|
140 |
+
annotations_dir = os.path.join(seg_db_dir, "annotations")
|
141 |
+
train_file = os.path.join(seg_db_dir, "train_db.txt")
|
142 |
+
|
143 |
+
# Create dataset
|
144 |
+
dataset = fo.Dataset(name="AVM_Segmentation", overwrite=True, persistent=True)
|
145 |
+
|
146 |
+
# Add dataset metadata
|
147 |
+
dataset.info = {
|
148 |
+
"description": "AVM (Around View Monitoring) System Dataset for Auto Parking - Semantic Segmentation",
|
149 |
+
"source": "https://github.com/ChulhoonJang/avm_dataset",
|
150 |
+
"classes": {
|
151 |
+
"0": {"name": "free_space", "color": [0, 0, 255]},
|
152 |
+
"1": {"name": "marker", "color": [255, 255, 255]},
|
153 |
+
"2": {"name": "vehicle", "color": [255, 0, 0]},
|
154 |
+
"3": {"name": "other", "color": [0, 255, 0]},
|
155 |
+
"4": {"name": "ego_vehicle", "color": [0, 0, 0]}
|
156 |
+
},
|
157 |
+
"image_dimensions": {"width": 320, "height": 160}
|
158 |
+
}
|
159 |
+
|
160 |
+
# Get train pairs
|
161 |
+
train_pairs = parse_train_file(train_file, seg_db_dir)
|
162 |
+
|
163 |
+
samples = []
|
164 |
+
print(f"Processing {len(train_pairs)} training samples...")
|
165 |
+
|
166 |
+
for i, (image_path, mask_path) in enumerate(train_pairs):
|
167 |
+
filename = os.path.basename(image_path)
|
168 |
+
base_name = os.path.splitext(filename)[0]
|
169 |
+
annotation_path = os.path.join(annotations_dir, f"{base_name}.yml")
|
170 |
+
|
171 |
+
if not all(os.path.exists(p) for p in [image_path, mask_path, annotation_path]):
|
172 |
+
continue
|
173 |
+
|
174 |
+
# Get image dimensions
|
175 |
+
with Image.open(image_path) as img:
|
176 |
+
width, height = img.size
|
177 |
+
|
178 |
+
# Load annotation and create polylines
|
179 |
+
annotation = load_yaml_annotation(annotation_path)
|
180 |
+
polylines, class_counts = parse_annotation_to_polylines(annotation, width, height)
|
181 |
+
|
182 |
+
# Extract metadata
|
183 |
+
metadata = extract_metadata_from_filename(filename)
|
184 |
+
environment, parking_type, slot_type = determine_environment_and_parking_type(
|
185 |
+
annotation, metadata["sample_id"]
|
186 |
+
)
|
187 |
+
|
188 |
+
# Load mask and create segmentation
|
189 |
+
mask = np.array(Image.open(mask_path))
|
190 |
+
segmentation = create_segmentation_from_mask(mask)
|
191 |
+
|
192 |
+
# Create sample with all metadata
|
193 |
+
sample = fo.Sample(
|
194 |
+
filepath=image_path,
|
195 |
+
split="train",
|
196 |
+
sample_id=metadata["sample_id"],
|
197 |
+
environment=fol.Classification(label=environment),
|
198 |
+
parking_type=fol.Classification(label=parking_type),
|
199 |
+
slot_type=fol.Classification(label=slot_type),
|
200 |
+
polygon_annotations=fol.Polylines(polylines=polylines),
|
201 |
+
classes_present=annotation.get('attribute', []),
|
202 |
+
num_markers=class_counts.get('marker', 0),
|
203 |
+
num_vehicles=class_counts.get('vehicle', 0),
|
204 |
+
has_curb=('curb' in annotation.get('attribute', [])),
|
205 |
+
has_ego_vehicle=('ego_vehicle' in annotation.get('attribute', [])),
|
206 |
+
ground_truth=segmentation,
|
207 |
+
mask_path=mask_path
|
208 |
+
)
|
209 |
+
|
210 |
+
samples.append(sample)
|
211 |
+
|
212 |
+
if (i + 1) % 100 == 0:
|
213 |
+
print(f" Processed {i + 1} samples...")
|
214 |
+
|
215 |
+
# Add samples to dataset
|
216 |
+
dataset.add_samples(samples)
|
217 |
+
dataset.compute_metadata()
|
218 |
+
dataset.add_dynamic_sample_fields()
|
219 |
+
|
220 |
+
print(f"✅ Dataset created with {len(samples)} samples!")
|
221 |
+
return dataset
|
222 |
+
|
223 |
+
|
224 |
+
def main():
|
225 |
+
"""Main function."""
|
226 |
+
dataset_root = "/Users/harpreetsahota/workspace/avm_dataset"
|
227 |
+
|
228 |
+
dataset = process_avm_dataset(dataset_root)
|
229 |
+
|
230 |
+
print("Launch FiftyOne app with:")
|
231 |
+
print(" import fiftyone as fo")
|
232 |
+
print(" dataset = fo.load_dataset('AVM_Segmentation')")
|
233 |
+
print(" session = fo.launch_app(dataset)")
|
234 |
+
|
235 |
+
|
236 |
+
if __name__ == "__main__":
|
237 |
+
main()
|