File size: 1,604 Bytes
c363c04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
!pip install torch torchvision numpy opencv-python
from torchvision import datasets, transforms
transform = transforms.Compose([
transforms.Resize((128, 128)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# Insert your 'path_to_train_data'
train_dataset = datasets.ImageFolder(root='path_to_train_data', transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
import torch.nn as nn
import torchvision.models as models
model = models.resnet18(pretrained=True)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, num_classes) # num_classes should be the number of individuals in your dataset
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in test_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f'Accuracy: {accuracy}%')
model.eval()
img = Image.open('path_to_image')
img = transform(img).unsqueeze(0) # Add batch dimension
output = model(img)
_, predicted = torch.max(output, 1)
print(f'Predicted Class: {predicted.item()}') |