|
!pip install torch torchvision numpy opencv-python |
|
|
|
from torchvision import datasets, transforms |
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((128, 128)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
]) |
|
|
|
|
|
train_dataset = datasets.ImageFolder(root='path_to_train_data', transform=transform) |
|
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) |
|
|
|
import torch.nn as nn |
|
import torchvision.models as models |
|
|
|
model = models.resnet18(pretrained=True) |
|
num_features = model.fc.in_features |
|
model.fc = nn.Linear(num_features, num_classes) |
|
|
|
import torch.optim as optim |
|
|
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.Adam(model.parameters(), lr=0.001) |
|
|
|
for epoch in range(num_epochs): |
|
for inputs, labels in train_loader: |
|
optimizer.zero_grad() |
|
outputs = model(inputs) |
|
loss = criterion(outputs, labels) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
model.eval() |
|
correct = 0 |
|
total = 0 |
|
with torch.no_grad(): |
|
for inputs, labels in test_loader: |
|
outputs = model(inputs) |
|
_, predicted = torch.max(outputs.data, 1) |
|
total += labels.size(0) |
|
correct += (predicted == labels).sum().item() |
|
|
|
accuracy = 100 * correct / total |
|
print(f'Accuracy: {accuracy}%') |
|
|
|
model.eval() |
|
img = Image.open('path_to_image') |
|
img = transform(img).unsqueeze(0) |
|
output = model(img) |
|
_, predicted = torch.max(output, 1) |
|
print(f'Predicted Class: {predicted.item()}') |