File size: 2,611 Bytes
b437a2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
df = pd.read_csv('/content/Raw Data.csv')
df.info()
cols_index = list(range(7, 14)) + list(range(16, 26)) + list(range(28,37))
df.drop(columns=df.columns[cols_index], inplace=True)
df.info()
df.columns = df.columns.str.replace(r'^\d+\.\s*','', regex=True)
df.rename(columns = {'Did you receiver a waiver or scholarship at your university?': 'Waiver/Scholarship'}, inplace=True)
df.info()
value_cols = ['Anxiety Value', 'Stress Value', 'Depression Value']
for col in value_cols:
plt.figure(figsize=(10,6))
plt.title(f'{col}, Distribution')
sns.histplot(data=df, x=col, bins=10)
plt.show()
label_cols = ['Anxiety Label', 'Stress Label', 'Depression Label']
for col in label_cols:
data = df[col].value_counts().reset_index()
plt.figure(figsize=(10,6))
plt.title(f'{col} Distribution')
sns.barplot(data=data, x=col, y='count', palette='viridis', width=.4)
plt.xticks(rotation=45)
plt.xlabel('')
plt.ylabel('')
plt.show()
features = df.drop(columns=value_cols+label_cols).columns
for label in label_cols:
label_name = label.split(' ')[0]
print(f'\n{label_name} Analysis\n')
for col in features:
pivot_table = pd.crosstab(df[col], df[label])
pivot_tabel = pivot_table.div(pivot_table.sum(axis=1), axis=0) * 100
plt.figure(figsize=(10,8))
sns.heatmap(pivot_table, annot=True, fmt='.2f', cmap='YlGnBu')
plt.title(f'{label_name} vs {col}')
plt.xlabel('')
plt.ylabel('')
plt.yticks(rotation=0)
plt.show()
from sklearn.preprocessing import OrdinalEncoder
df.drop(columns=value_cols, inplace=True)
ordinal_encoder = OrdinalEncoder()
df[df.columns] = ordinal_encoder.fit_transform(df[df.columns])
df.head()
for label in label_cols:
cols = list(features).copy()
cols.append(label)
data = df[cols].corr()
plt.figure(figsize=(10,8))
sns.heatmap(data, annot=True, fmt='.3f', cmap='coolwarm')
plt.title(f'{label} Correlation')
plt.show()
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
print('Model Accuracy')
for label in label_cols:
X = df.drop(columns=label_cols)
y = df[label]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 0)
model = RandomForestClassifier(random_state=0, n_estimators=30, max_depth=8)
model.fit(X_train, y_train)
preds = model.predict(X_test)
print(f'{label}: {accuracy_score(y_test, preds) * 100:.2f}%') |