|
|
|
"""1812.159.252 |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/18Q9tMQvVHXk2Rs_3EoKpdRhFuOyv4iDk |
|
""" |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
df = pd.read_csv('/content/Raw Data.csv') |
|
|
|
df.info() |
|
|
|
cols_index = list(range(7, 14)) + list(range(16, 26)) + list(range(28,37)) |
|
|
|
df.drop(columns=df.columns[cols_index], inplace=True) |
|
|
|
df.info() |
|
|
|
df.columns = df.columns.str.replace(r'^\d+\.\s*','', regex=True) |
|
df.rename(columns = {'Did you receiver a waiver or scholarship at your university?': 'Waiver/Scholarship'}, inplace=True) |
|
|
|
df.info() |
|
|
|
value_cols = ['Anxiety Value', 'Stress Value', 'Depression Value'] |
|
|
|
for col in value_cols: |
|
plt.figure(figsize=(10,6)) |
|
plt.title(f'{col}, Distribution') |
|
sns.histplot(data=df, x=col, bins=10) |
|
plt.show() |
|
|
|
label_cols = ['Anxiety Label', 'Stress Label', 'Depression Label'] |
|
|
|
for col in label_cols: |
|
data = df[col].value_counts().reset_index() |
|
plt.figure(figsize=(10,6)) |
|
plt.title(f'{col} Distribution') |
|
sns.barplot(data=data, x=col, y='count', palette='viridis', width=.4) |
|
plt.xticks(rotation=45) |
|
plt.xlabel('') |
|
plt.ylabel('') |
|
plt.show() |
|
|
|
features = df.drop(columns=value_cols+label_cols).columns |
|
|
|
for label in label_cols: |
|
label_name = label.split(' ')[0] |
|
print(f'\n{label_name} Analysis\n') |
|
for col in features: |
|
pivot_table = pd.crosstab(df[col], df[label]) |
|
pivot_tabel = pivot_table.div(pivot_table.sum(axis=1), axis=0) * 100 |
|
plt.figure(figsize=(10,8)) |
|
sns.heatmap(pivot_table, annot=True, fmt='.2f', cmap='YlGnBu') |
|
plt.title(f'{label_name} vs {col}') |
|
plt.xlabel('') |
|
plt.ylabel('') |
|
plt.yticks(rotation=0) |
|
plt.show() |
|
|
|
from sklearn.preprocessing import OrdinalEncoder |
|
|
|
df.drop(columns=value_cols, inplace=True) |
|
|
|
ordinal_encoder = OrdinalEncoder() |
|
df[df.columns] = ordinal_encoder.fit_transform(df[df.columns]) |
|
|
|
df.head() |
|
|
|
for label in label_cols: |
|
cols = list(features).copy() |
|
cols.append(label) |
|
data = df[cols].corr() |
|
plt.figure(figsize=(10,8)) |
|
sns.heatmap(data, annot=True, fmt='.3f', cmap='coolwarm') |
|
plt.title(f'{label} Correlation') |
|
plt.show() |
|
|
|
from sklearn.model_selection import train_test_split |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.metrics import accuracy_score |
|
|
|
print('Model Accuracy') |
|
for label in label_cols: |
|
X = df.drop(columns=label_cols) |
|
y = df[label] |
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 0) |
|
|
|
model = RandomForestClassifier(random_state=0, n_estimators=30, max_depth=8) |
|
model.fit(X_train, y_train) |
|
preds = model.predict(X_test) |
|
|
|
print(f'{label}: {accuracy_score(y_test, preds) * 100:.2f}%') |