Gomotions-tokenizer / README.md
codewithdark's picture
Update README.md
1e57902 verified

license: mit dataset_info: features:

  • name: input_ids sequence: int32
  • name: attention_mask sequence: int8
  • name: labels sequence: int64 splits:
  • name: train num_bytes: 121374360 num_examples: 43410
  • name: validation num_bytes: 15171096 num_examples: 5426
  • name: test num_bytes: 15173892 num_examples: 5427 download_size: 2670120 dataset_size: 151719348 configs:
  • config_name: default data_files:
    • split: train path: data/train-*
    • split: validation path: data/validation-*
    • split: test path: data/test-*

📚 GoEmotions Dataset (Processed for Multi-Label Classification)

📖 Dataset Overview

This dataset is a preprocessed version of the GoEmotions dataset, containing multi-label emotion annotations for text inputs. It consists of train, validation, and test splits.

🔢 Dataset Statistics

Split Samples
Train XX,XXX
Validation X,XXX
Test X,XXX

📌 Features

Feature Type Description
input_ids list[int] Tokenized input text
attention_mask list[int] Attention mask for tokens
labels list[int] Multi-label emotion encoding

📂 How to Load

from datasets import load_dataset

dataset = load_dataset("codewithdark/go-emotions-processed")
print(dataset["train"][0])

🏋️‍♂️ Preprocessing Steps

  • Tokenization: bert-base-uncased
  • Multi-label encoding: Binary encoding of emotions
  • Train/Validation/Test split: 80/10/10

🎯 Labels (Emotions)

The dataset contains 27 emotion categories, including:

  • Admiration, Joy, Sadness, Anger, Optimism, Disgust, Love, etc.

🛠️ Citation

If you use this dataset, please cite:

@misc{go_emotions_dataset,
  author = {Google AI},
  title = {GoEmotions Dataset},
  year = {2021},
  url = {https://huggingface.co/datasets/go_emotions}
}