eoguzakin's picture
Update README.md
c7649c0 verified
|
raw
history blame
6.76 kB
---
pretty_name: AIGI Inpainting Robustness
dataset_name: aigi-inpainting-robustness
tags:
- ai-generated-images
- inpainting
- robustness
- diffusion
- watermarking
license: cc-by-nc-4.0
task_categories:
- image-classification
- other
size_categories:
- 1K<n<10K
homepage: https://huggingface.co/datasets/eoguzakin/Robustness of AI-Generated Image Detection Against Localized Inpainting Attacks
---
# Robustness of AI-Generated Image Detection Against Localized Inpainting Attacks
This repository hosts the **detector-ready datasets** and **mask packs** used in the thesis:
> **Robustness of AI-Generated Image Detection Against Localized Inpainting Attacks**
> *Oguz Akin, Saarland University, CISPA Helmholtz Center for Information Security (2025)*
It provides standardized evaluation splits for six state-of-the-art AI-generated image (AIGI) detectors across **watermarking, passive, and training-free paradigms**, tested under **LaMa** and **ZITS** inpainting attacks.
Everything is packaged as `.tar.xz` archives to ensure reproducibility and easy transfer.
---
## 📂 Repository Structure
.
├─ detectors/
│ ├─ ufd_datasets.tar.xz
│ ├─ dimd_datasets.tar.xz
│ ├─ dire_datasets.tar.xz
│ ├─ aeroblade_datasets.tar.xz
│ ├─ stablesig_datasets.tar.xz
│ └─ treering_datasets.tar.xz
├─ masks/
│ ├─ masks_stablesig.tar.xz
│ └─ masks_treering_wm.tar.xz
└─ checksums.sha256
- **detectors/** — per-detector dataset “views,” already resized/re-encoded into the formats expected by each model.
- **masks/** — random-rectangle and random-blob object masks (area-binned), used to generate inpainting attacks.
- **checksums.sha256** — SHA-256 integrity hashes for all archives.
---
## 🔎 Dataset Details
### Detector Views
Each archive expands into the exact layout expected by that detector. All splits contain **200 images per subset** (balanced).
Typical layout:
baseline/
reals/
fakes/
[fakes_inpainted_lama/, fakes_inpainted_zits/]
robustness/
inpainted_lama/
randrect/
randblob_bins/bin{1..4}/
inpainted_zits/
randrect/
randblob_bins/bin{1..4}/
[reals_inpainted/]
---
### Detector Input Handling
**On disk:** All datasets are stored with their preprocessed versions for each detector to match their original paper/training setup.
- **UFD → 224**
(Resized + center-cropped to 224×224, CLIP normalization.)
- **DIMD → JPEG-256**
(Resized to 256×256, with JPEG round-trip to mimic training distribution.)
- **DIRE → 256**
(Resized to 256×256, matching the ADM ImageNet-256 diffusion prior.)
- **AEROBLADE / StableSig / Tree-Ring → 512**
(All evaluated directly at 512×512 without JPEG compression.)
> **Why this split?** To eliminate the effect of compression or size on classification, ensuring scientifically fair evaluation.
---
### Mask Packs
- **masks_stablesig.tar.xz**
- **masks_treering_wm.tar.xz**
Contain **random rectangle** and **random blob masks**, binned by area ratio:
- `bin1_0-3` → 0–3% of image area
- `bin2_3-10` → 3–10%
- `bin3_10-25` → 10–25%
- `bin4_25-40` → 25–40%
Used with **LaMa** and **ZITS** to create controlled inpainting attacks.
---
## 📐 Metrics
Datasets are organized to support a **fixed-threshold robustness evaluation**.
- **Baseline AUC**
Distinguish clean **reals vs fakes**. Threshold `t*` chosen via **Youden’s J**.
- **Robustness AUC**
Distinguish **clean vs inpainted**.
- **ΔAUC = Baseline – Robustness**
- **ASR_inpainted** (primary):
% of **inpainted reals** classified as Real at baseline `t*`.
- **ASR_fake→real** (secondary):
% of **baseline-detected fakes** that flip to Real after inpainting.
**Watermarking detectors:**
- Thresholds fixed at **t90** and **t99** on clean watermarked images together with another threshold that is determined at baseline to reflect a real life setting.
- **ASR** = % attacked watermarked images where watermark is not detected.
- **AUC(clean vs attacked)** sanity check.
---
## 📦 Archive Sizes
- `detectors/aeroblade_datasets.tar.xz` — **1.5 GB**
- `detectors/dimd_datasets.tar.xz`**117 MB**
- `detectors/dire_datasets.tar.xz`**468 MB**
- `detectors/stablesig_datasets.tar.xz`**924 MB**
- `detectors/treering_datasets.tar.xz`**1.6 GB**
- `detectors/ufd_datasets.tar.xz`**442 MB**
- `masks/masks_stablesig.tar.xz`**2.2 MB**
- `masks/masks_treering_wm.tar.xz`**1.2 MB**
---
## ⚙️ Usage
### Download & Extract
```python
from huggingface_hub import hf_hub_download
import tarfile, os
REPO = "eoguzakin/Robustness of AI-Generated Image Detection Against Localized Inpainting Attacks"
def fetch_and_extract(filename, target_dir):
path = hf_hub_download(repo_id=REPO, filename=filename, repo_type="dataset")
os.makedirs(target_dir, exist_ok=True)
with tarfile.open(path, "r:xz") as tar:
tar.extractall(target_dir)
print("Extracted:", target_dir)
# Example: UFD view + StableSig masks
fetch_and_extract("detectors/ufd_datasets.tar.xz", "/tmp/ufd")
fetch_and_extract("masks/masks_stablesig.tar.xz", "/tmp/masks_stablesig")
```
Integrity check
```bash
sha256sum -c checksums.sha256
```
🧪 Provenance
Reals: SEMI-TRUTHS (Pal et al. 2024), OpenImages subset.
Fakes: GenImage diverse generator set.
Inpainting attacks: LaMa (Suvorov et al. 2022), ZITS (Dong et al. 2022).
Watermarks: Stable Signature (Fernandez et al. 2023), Tree-Ring (Wen et al. 2023).
Detector-specific preprocessing applied only at runtime, ensuring comparability.
---
📚 Citations
If you use this dataset, please cite:
- Pal et al., 2024 — Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image Detectors.
- Ojha et al., 2023 — Universal Fake Image Detectors.
- Corvi et al., 2023 — On the Detection of Synthetic Images Generated by Diffusion Models.
- Wang et al., 2023 — DIRE for Diffusion-Generated Image Detection.
- Ricker et al., 2024 — AEROBLADE. Fernandez et al., 2023 — Stable Signature.
- Wen et al., 2023 — Tree-Ring Watermarks.
- Suvorov et al., 2022 — LaMa Inpainting.
- Rombach et al., 2022 — Latent Diffusion Models. Dong et al., 2022 — ZITS Inpainting.
📝 License
Derived datasets for research use only.
Upstream datasets (SEMI-TRUTHS, GenImage, LaMa, ZITS, etc.) retain their original licenses.
This packaging (scripts + archive structure) is released under CC BY-NC 4.0 unless otherwise specified.
👤 Maintainer
Oguz Akin — Saarland University
Contact: [email protected]
🗓️ Changelog
v1.0 — Initial release with detector views + masks for LaMa and ZITS inpainting.