Search is not available for this dataset
fact
string
imports
string
filename
string
symbolic_name
string
__index_level_0__
int64
Fixpoint foldr {R} (o: T → R) (f: T → R → R) (a: L): R := match a with | one x => o x | cons x y => f x (foldr o f y) end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,060
Fixpoint foldr1 (f: T → T → T) (a: L): T := match a with | one x => x | cons x y => f x (foldr1 f y) end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,061
Definition head (l: L): T := match l with one x => x | cons x _ => x end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,062
Fixpoint to_list (l: L): list T := match l with | one x => x :: nil | cons x xs => x :: to_list xs end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,063
Fixpoint from_list (x: T) (xs: list T): L := match xs with | nil => one x | List.cons h t => cons x (from_list h t) end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,064
Definition tail (l: L): list T := match l with one _ => nil | cons _ x => to_list x end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,065
Definition last: L → T := foldr1 (fun x y => y).
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,066
Fixpoint replicate_Sn (x: T) (n: nat): L := match n with | 0 => one x | S n' => cons x (replicate_Sn x n') end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,067
Fixpoint take (n: nat) (l: L): L := match l, n with | cons x xs, S n' => take n' xs | _, _ => one (head l) end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,068
Definition Permutation (x y: L): Prop := ListPermutation x y.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,069
Fixpoint tails {A} (l: L A): L (L A) := match l with | one x => one (one x) | cons x y => cons l (tails y) end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,070
Fixpoint map {A B} (f: A → B) (l: L A): L B := match l with | one x => one (f x) | cons h t => cons (f h) (map f t) end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,071
Fixpoint inits {A} (l: L A): L (L A) := match l with | one x => one (one x) | cons h t => cons (one h) (map (cons h) (inits t)) end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,072
Fixpoint ne_zip {A B: Type} (l: ne_list A) (m: ne_list B) {struct l} : ne_list (A * B) := match l with | one a => one (a, head m) | a ::: l => match m with | one b => one (a, b) | b ::: m => (a, b) ::: ne_zip l m end end.
Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation
coq-community-math-classes/implementations/ne_list
coq-community-math-classes
1,073
Definition g : N → R := f ∘ cast N (SRpair N).
Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.theory.categories MathClasses.interfaces.naturals MathClasses.interfaces.integers MathClasses.theory.jections MathClasses.implementations.semiring_pairs
coq-community-math-classes/implementations/natpair_integers
coq-community-math-classes
1,074
Definition is_multiple `{Equiv Z} `{Mult Z} (b x : Z) := ∃ k, x = b * k.
Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.theory.integers MathClasses.theory.ring_ideals
coq-community-math-classes/implementations/modular_ring
coq-community-math-classes
1,075
Definition NonZero_inject (x : F ₀) : F := `x.
Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.theory.fields
coq-community-math-classes/implementations/nonzero_field_elements
coq-community-math-classes
1,076
Definition fset_map `(f : A → B) `{SetType A} `{SetType B} `{EmptySet B} `{SetJoin B} `{SetSingleton B} `{U : !FSetExtend A} : set_type A → set_type B := fset_extend (singleton ∘ f).
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders
coq-community-math-classes/interfaces/finite_sets
coq-community-math-classes
1,077
Fixpoint map_var `(f: V → W) `(t: Term V o): Term W o := match t in Term _ o return Term W o with | Var v s => Var (f v) s | App _ _ _ x y => App _ _ _ (map_var f x) (map_var f y) | Op _ s => Op _ s end.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,079
Definition Term0 v sort := Term v (ne_list.one sort).
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,080
Fixpoint applications {ot}: Term V ot → Type := match ot with | ne_list.one x => @P x | ne_list.cons x y => λ z, ∀ v, P v → applications (App V _ _ z v) end.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,081
Definition T := Term nat.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,082
Definition T0 := Term0 nat.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,083
Definition Identity t := prod (T t) (T t).
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,084
Definition Identity0 sort := Identity (ne_list.one sort).
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,085
Definition mkIdentity0 {sort}: T (ne_list.one sort) → T (ne_list.one sort) → Identity0 sort := pair.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,086
Record Entailment (P: Type): Type := { entailment_premises: list P; entailment_conclusion: P }.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,087
Definition EqEntailment := Entailment (sigT Identity0).
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,088
Definition identity_as_eq (s: sigT Identity0): Statement := Eq _ (projT2 s).
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,089
Definition entailment_as_conjunctive_statement (e: EqEntailment): Statement := Impl (fold_right Conj (Ext True) (map identity_as_eq (entailment_premises _ e))) (identity_as_eq (entailment_conclusion _ e)).
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,090
Definition Vars := ∀ a, V → A a.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,091
Definition no_vars x: Vars x False := λ _, False_rect _.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,092
Fixpoint close {V} {o} (v: Vars (λ x, Term False (ne_list.one x)) V) (t: Term V o): Term False o := match t in Term _ o return Term False o with | Var x y => v y x | App _ x y z r => App _ x y (close v z) (close v r) | Op _ o => Op _ o end.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,093
Fixpoint eval {V} {n: OpType} (vars: Vars A V) (t: Term V n) {struct t}: op_type A n := match t with | Var v a => vars a v | Op _ o => algebra_op o | App _ n a f p => eval vars f (eval vars p) end.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,094
Fixpoint app_tree {V} {o}: Term V o → op_type (Term0 V) o := match o with | ne_list.one _ => id | ne_list.cons _ _ => λ x y, app_tree (App _ _ _ x y) end.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,095
Definition eval_stmt (vars: Vars A nat): Statement → Prop := fix F (s: Statement) := match s with | Eq _ i => eval vars (fst i) = eval vars (snd i) | Impl a b => F a → F b | Ext P => P | Conj a b => F a ∧ F b | Disj a b => F a ∨ F b end.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,096
Definition boring_eval_entailment (vars: Vars A nat) (ee: EqEntailment): eval_stmt vars ee ↔ eval_stmt vars (entailment_as_conjunctive_statement ee).
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,097
Record EquationalTheory := { et_sig:> Signature ; et_laws:> EqEntailment et_sig → Prop }.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.misc.util MathClasses.theory.jections MathClasses.interfaces.ua_basic
coq-community-math-classes/interfaces/universal_algebra
coq-community-math-classes
1,098
Definition OpType := ne_list Sorts.
Coq.Lists.List MathClasses.interfaces.abstract_algebra
coq-community-math-classes/interfaces/ua_basic
coq-community-math-classes
1,100
Definition result: OpType → Sorts := @ne_list.last _.
Coq.Lists.List MathClasses.interfaces.abstract_algebra
coq-community-math-classes/interfaces/ua_basic
coq-community-math-classes
1,101
Variable carrier: Sorts → Type.
Coq.Lists.List MathClasses.interfaces.abstract_algebra
coq-community-math-classes/interfaces/ua_basic
coq-community-math-classes
1,102
Fixpoint op_type (o: OpType): Type := match o with | ne_list.one a => carrier a | ne_list.cons a g => carrier a → op_type g end.
Coq.Lists.List MathClasses.interfaces.abstract_algebra
coq-community-math-classes/interfaces/ua_basic
coq-community-math-classes
1,103
Fixpoint op_type_equiv o: Equiv (op_type o) := match o with | ne_list.one _ => _: Equiv (carrier _) | ne_list.cons A g => (e A ==> op_type_equiv g)%signature end.
Coq.Lists.List MathClasses.interfaces.abstract_algebra
coq-community-math-classes/interfaces/ua_basic
coq-community-math-classes
1,104
Definition single_sorted_signature {Op: Set} (arities: Op → nat): Signature := Build_Signature unit Op (ne_list.replicate_Sn tt ∘ arities).
Coq.Lists.List MathClasses.interfaces.abstract_algebra
coq-community-math-classes/interfaces/ua_basic
coq-community-math-classes
1,105
Definition fold `{MonUnit M} `{SgOp M}: free M → M := extend id.
Coq.Lists.List MathClasses.interfaces.abstract_algebra MathClasses.theory.categories MathClasses.theory.forget_algebra MathClasses.theory.forget_variety MathClasses.theory.rings MathClasses.interfaces.universal_algebra MathClasses.interfaces.functors MathClasses.categories.setoids MathClasses.categories.varieties
coq-community-math-classes/interfaces/sequences
coq-community-math-classes
1,106
Definition nat_distance `{nd : NatDistance N} (x y : N) := match nat_distance_sig x y with | inl (n↾_) => n | inr (n↾_) => n end.
MathClasses.interfaces.abstract_algebra MathClasses.theory.categories MathClasses.varieties.semirings MathClasses.categories.varieties
coq-community-math-classes/interfaces/naturals
coq-community-math-classes
1,108
Definition int_abs `{ia : IntAbs} (x : Z) : N := match int_abs_sig x with | inl (n↾_) => n | inr (n↾_) => n end.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.naturals MathClasses.theory.categories MathClasses.categories.varieties
coq-community-math-classes/interfaces/integers
coq-community-math-classes
1,110
Definition int_to_nat `{Zero N} `{ia : IntAbs} (x : Z) : N := match int_abs_sig x with | inl (n↾_) => n | inr (n↾_) => 0 end.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.naturals MathClasses.theory.categories MathClasses.categories.varieties
coq-community-math-classes/interfaces/integers
coq-community-math-classes
1,111
Definition id {A : Type} (a : A) := a.
MathClasses.theory.CoqStreams Coq.Classes.Morphisms Coq.Setoids.Setoid Coq.Program.Program Coq.Unicode.Utf8 Coq.Unicode.Utf8_core MathClasses.misc.stdlib_hints
coq-community-math-classes/interfaces/canonical_names
coq-community-math-classes
1,112
Definition ext_equiv `{Equiv A} `{Equiv B} : Equiv (A → B) := ((=) ==> (=))%signature.
MathClasses.theory.CoqStreams Coq.Classes.Morphisms Coq.Setoids.Setoid Coq.Program.Program Coq.Unicode.Utf8 Coq.Unicode.Utf8_core MathClasses.misc.stdlib_hints
coq-community-math-classes/interfaces/canonical_names
coq-community-math-classes
1,113
Definition sig_equiv `{Equiv A} (P: A → Prop) : Equiv (sig P) := λ x y, `x = `y.
MathClasses.theory.CoqStreams Coq.Classes.Morphisms Coq.Setoids.Setoid Coq.Program.Program Coq.Unicode.Utf8 Coq.Unicode.Utf8_core MathClasses.misc.stdlib_hints
coq-community-math-classes/interfaces/canonical_names
coq-community-math-classes
1,114
Definition sigT_equiv `{Equiv A} (P: A → Type) : Equiv (sigT P) := λ a b, projT1 a = projT1 b.
MathClasses.theory.CoqStreams Coq.Classes.Morphisms Coq.Setoids.Setoid Coq.Program.Program Coq.Unicode.Utf8 Coq.Unicode.Utf8_core MathClasses.misc.stdlib_hints
coq-community-math-classes/interfaces/canonical_names
coq-community-math-classes
1,115
Definition sig_apart `{Apart A} (P: A → Prop) : Apart (sig P) := λ x y, `x ≶ `y.
MathClasses.theory.CoqStreams Coq.Classes.Morphisms Coq.Setoids.Setoid Coq.Program.Program Coq.Unicode.Utf8 Coq.Unicode.Utf8_core MathClasses.misc.stdlib_hints
coq-community-math-classes/interfaces/canonical_names
coq-community-math-classes
1,116
Definition ApartZero R `{Zero R} `{Apart R} := sig (≶ zero).
MathClasses.theory.CoqStreams Coq.Classes.Morphisms Coq.Setoids.Setoid Coq.Program.Program Coq.Unicode.Utf8 Coq.Unicode.Utf8_core MathClasses.misc.stdlib_hints
coq-community-math-classes/interfaces/canonical_names
coq-community-math-classes
1,117
Definition NonNeg R `{Zero R} `{Le R} := sig (le zero).
MathClasses.theory.CoqStreams Coq.Classes.Morphisms Coq.Setoids.Setoid Coq.Program.Program Coq.Unicode.Utf8 Coq.Unicode.Utf8_core MathClasses.misc.stdlib_hints
coq-community-math-classes/interfaces/canonical_names
coq-community-math-classes
1,118
Definition Pos R `{Zero R} `{Equiv R} `{Lt R} := sig (lt zero).
MathClasses.theory.CoqStreams Coq.Classes.Morphisms Coq.Setoids.Setoid Coq.Program.Program Coq.Unicode.Utf8 Coq.Unicode.Utf8_core MathClasses.misc.stdlib_hints
coq-community-math-classes/interfaces/canonical_names
coq-community-math-classes
1,119
Definition NonPos R `{Zero R} `{Le R} := sig (λ y, le y zero).
MathClasses.theory.CoqStreams Coq.Classes.Morphisms Coq.Setoids.Setoid Coq.Program.Program Coq.Unicode.Utf8 Coq.Unicode.Utf8_core MathClasses.misc.stdlib_hints
coq-community-math-classes/interfaces/canonical_names
coq-community-math-classes
1,120
Definition abs `{Abs A} := λ x : A, ` (abs_sig x).
MathClasses.theory.CoqStreams Coq.Classes.Morphisms Coq.Setoids.Setoid Coq.Program.Program Coq.Unicode.Utf8 Coq.Unicode.Utf8_core MathClasses.misc.stdlib_hints
coq-community-math-classes/interfaces/canonical_names
coq-community-math-classes
1,121
Record Object := object { obj:> Type ; Arrows_inst: Arrows obj ; Equiv_inst: ∀ x y: obj, Equiv (x ⟶ y) ; CatId_inst: CatId obj ; CatComp_inst: CatComp obj ; Category_inst: Category obj }.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.functors MathClasses.theory.categories
coq-community-math-classes/categories/JMcat
coq-community-math-classes
1,122
Record Arrow (x y: Object): Type := arrow { map_obj:> obj x → obj y ; Fmap_inst: Fmap map_obj ; Functor_inst: Functor map_obj _ }.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.functors MathClasses.theory.categories
coq-community-math-classes/categories/JMcat
coq-community-math-classes
1,123
Variables (w x y z: Object) (a: w ⟶ x) (b: x ⟶ y) (c: y ⟶ z).
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.functors MathClasses.theory.categories
coq-community-math-classes/categories/categories
coq-community-math-classes
1,126
Record Object A `{Arrows A} `{∀ x y : A, Equiv (x ⟶ y)} `{!CatId A} `{!CatComp A} B `{Arrows B} `{∀ x y : B, Equiv (x ⟶ y)} `{!CatId B} `{!CatComp B} : Type := object { map_obj:> A → B ; Fmap_inst:> Fmap map_obj ; Functor_inst: Functor map_obj _ }.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.functors MathClasses.theory.categories
coq-community-math-classes/categories/functors
coq-community-math-classes
1,127
Record Arrow `{Arrows A} `{∀ x y : A, Equiv (x ⟶ y)} `{!CatId A} `{!CatComp A} `{Arrows B} `{∀ x y : B, Equiv (x ⟶ y)} `{!CatId B} `{!CatComp B} (F G : Object A B) : Type := arrow { eta:> map_obj F ⇛ map_obj G ; NaturalTransformation_inst: NaturalTransformation eta }.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.functors MathClasses.theory.categories
coq-community-math-classes/categories/functors
coq-community-math-classes
1,128
Record Object (et: EquationalTheory) : Type := object { variety_carriers:> sorts et → Type ; variety_equiv: ∀ a, Equiv (variety_carriers a) ; variety_ops: AlgebraOps et variety_carriers ; variety_proof: InVariety et variety_carriers }.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.universal_algebra MathClasses.theory.ua_homomorphisms
coq-community-math-classes/categories/varieties
coq-community-math-classes
1,129
Definition forget (O: Object) : setoids.Object := setoids.object O.
MathClasses.interfaces.abstract_algebra MathClasses.theory.categories MathClasses.orders.maps MathClasses.interfaces.orders MathClasses.orders.orders MathClasses.interfaces.functors
coq-community-math-classes/categories/orders
coq-community-math-classes
1,131
Definition Object := ∀ i, O i.
MathClasses.interfaces.abstract_algebra Coq.Logic.ChoiceFacts MathClasses.interfaces.functors MathClasses.theory.categories MathClasses.categories.categories
coq-community-math-classes/categories/product
coq-community-math-classes
1,132
Definition e (x y: Object): Equiv (x ⟶ y) := λ f g, ∀ i, f i = g i.
MathClasses.interfaces.abstract_algebra Coq.Logic.ChoiceFacts MathClasses.interfaces.functors MathClasses.theory.categories MathClasses.categories.categories
coq-community-math-classes/categories/product
coq-community-math-classes
1,133
Variables (C: categories.Object) (X: ∀ i, C ⟶ ith_obj i).
MathClasses.interfaces.abstract_algebra Coq.Logic.ChoiceFacts MathClasses.interfaces.functors MathClasses.theory.categories MathClasses.categories.categories
coq-community-math-classes/categories/product
coq-community-math-classes
1,134
Record Object (sign: Signature) : Type := object { algebra_carriers:> sorts sign → Type ; algebra_equiv: ∀ a, Equiv (algebra_carriers a) ; algebra_ops: AlgebraOps sign algebra_carriers ; algebra_proof: Algebra sign algebra_carriers }.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.universal_algebra MathClasses.theory.ua_homomorphisms MathClasses.theory.categories
coq-community-math-classes/categories/algebras
coq-community-math-classes
1,135
Definition fmap_op: @Fmap _ flipA _ flipA F := fun v w => @fmap _ _ _ _ F _ w v.
Coq.Relations.Relation_Definitions MathClasses.interfaces.abstract_algebra MathClasses.theory.categories MathClasses.interfaces.functors
coq-community-math-classes/categories/dual
coq-community-math-classes
1,137
Definition Empty_map {A: Empty_set → Type} : ∀ x : Empty_set, A x := λ x, match x with end.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.functors
coq-community-math-classes/categories/empty
coq-community-math-classes
1,138
Definition sort (x y: A) : A * A := if decide_rel (≤) x y then (x, y) else (y, x).
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.orders.orders MathClasses.orders.lattices MathClasses.theory.setoids
coq-community-math-classes/orders/minmax
coq-community-math-classes
1,139
Definition default_join_sl_le `{JoinSemiLattice L} : Le L := λ x y, x ⊔ y = y.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.orders.maps MathClasses.theory.lattices
coq-community-math-classes/orders/lattices
coq-community-math-classes
1,140
Definition default_meet_sl_le `{MeetSemiLattice L} : Le L := λ x y, x ⊓ y = x.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.orders.maps MathClasses.theory.lattices
coq-community-math-classes/orders/lattices
coq-community-math-classes
1,141
Definition lt_dec_slow `{!TrivialApart A} `{∀ x y, Decision (x ≤ y)} : ∀ x y, Decision (x < y).
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.theory.strong_setoids
coq-community-math-classes/orders/orders
coq-community-math-classes
1,142
Definition dec_lt: Lt A := λ x y, x ≤ y ∧ x ≠ y.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.theory.strong_setoids
coq-community-math-classes/orders/orders
coq-community-math-classes
1,143
Definition pointwise_dependent_relation: relation (∀ a, B a) := λ f f', ∀ a, R _ (f a) (f' a).
Coq.Program.Program Coq.Classes.Morphisms Coq.Setoids.Setoid MathClasses.interfaces.canonical_names
coq-community-math-classes/misc/util
coq-community-math-classes
1,144
Definition iffT (A B: Type): Type := prod (A → B) (B → A).
Coq.Program.Program Coq.Classes.Morphisms Coq.Setoids.Setoid MathClasses.interfaces.canonical_names
coq-community-math-classes/misc/util
coq-community-math-classes
1,145
Definition uncurry {A B C} (f: A → B → C) (p: A * B): C := f (fst p) (snd p).
Coq.Program.Program Coq.Classes.Morphisms Coq.Setoids.Setoid MathClasses.interfaces.canonical_names
coq-community-math-classes/misc/util
coq-community-math-classes
1,146
Definition is_sole `{Equiv T} (P: T → Prop) (x: T) : Prop := P x ∧ ∀ y, P y → y = x.
Coq.Program.Program Coq.Classes.Morphisms Coq.Setoids.Setoid MathClasses.interfaces.canonical_names
coq-community-math-classes/misc/util
coq-community-math-classes
1,147
Definition DN (T: Type): Prop := (T → False) → False.
Coq.Program.Program Coq.Classes.Morphisms Coq.Setoids.Setoid MathClasses.interfaces.canonical_names
coq-community-math-classes/misc/util
coq-community-math-classes
1,148
Definition is_Some `(x : option A) := match x with | None => False | Some _ => True end.
Coq.Program.Program Coq.Classes.Morphisms Coq.Setoids.Setoid MathClasses.interfaces.canonical_names
coq-community-math-classes/misc/util
coq-community-math-classes
1,149
Definition is_None `(x : option A) := match x with | None => True | Some _ => False end.
Coq.Program.Program Coq.Classes.Morphisms Coq.Setoids.Setoid MathClasses.interfaces.canonical_names
coq-community-math-classes/misc/util
coq-community-math-classes
1,150
Definition bool_decide (P : Prop) `{dec : !Decision P} : bool := if dec then true else false.
MathClasses.interfaces.canonical_names MathClasses.misc.util
coq-community-math-classes/misc/decision
coq-community-math-classes
1,151
Definition decide_rel `(R : A → B → Prop) {dec : ∀ x y, Decision (R x y)} (x : A) (y : B) : Decision (R x y) := dec x y.
MathClasses.interfaces.canonical_names MathClasses.misc.util
coq-community-math-classes/misc/decision
coq-community-math-classes
1,152
Definition bool_decide_rel `(R : relation A) {dec : ∀ x y, Decision (R x y)} : A → A → bool := λ x y, if dec x y then true else false.
MathClasses.interfaces.canonical_names MathClasses.misc.util
coq-community-math-classes/misc/decision
coq-community-math-classes
1,153
Fixpoint root_loop (x : Dyadic Z) (n : nat) : Dyadic Z * Dyadic Z := match n with | O => (x, 0) | S n => let (r, s) := root_loop x n in if decide_rel (≤) (s + 1) r then ((r - (s + 1)) ≪ 2, (s + 2) ≪ 1) else (r ≪ 2, s ≪ 1) end.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,154
Definition fast_root_loop := root_loop (Z:=fastZ).
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,155
Definition BigD_0 : bigD := (0 ▼ 0).
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers BigZ
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,156
Definition BigD_1 : bigD := (1 ▼ 0).
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers BigZ
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,157
Definition BigD_2 : bigD := (2 ▼ 0).
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers BigZ
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,158
Definition BigD_plus (x y : bigD) : bigD := match BigZ.compare (expo x) (expo y) with | Gt => BigZ.shiftl (mant x) (expo x - expo y) + mant y ▼ BigZ.min (expo x) (expo y) | _ => mant x + BigZ.shiftl (mant y) (expo y - expo x) ▼ BigZ.min (expo x) (expo y) end.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers BigZ
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,159
Definition BigD_opp (x : bigD) : bigD := -mant x ▼ expo x.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers BigZ
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,160
Definition BigD_mult (x y : bigD) : bigD := mant x * mant y ▼ expo x + expo y.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers BigZ
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,161
Definition BigD_shiftl (x : bigD) (n : bigZ) : bigD := mant x ▼ expo x + n.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers BigZ
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,162
Definition BigD_compare (x y : bigD) : comparison := match BigZ.compare (expo x) (expo y) with | Gt => BigZ.compare (BigZ.shiftl (mant x) (expo x - expo y)) (mant y) | _ => BigZ.compare (mant x) (BigZ.shiftl (mant y) (expo y - expo x)) end.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers BigZ
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,163
Fixpoint root_loop_alt (x : bigD) (n : nat) : bigD * bigD := match n with | O => (x, BigD_0) | S n => let (r, s) := root_loop_alt x n in match BigD_compare (BigD_plus s BigD_1) r with | Gt => (BigD_shiftl r 2, BigD_shiftl s 1) | _ => (BigD_shiftl (BigD_plus r (BigD_opp (BigD_plus s BigD_1))) 2, BigD_shiftl (BigD_plus s BigD_2) 1) end end.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers BigZ
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,164
Definition BigD_4 : bigD := (4 ▼ 0).
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers BigZ
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,165
Fixpoint root_loop_alt_mult (x : bigD) (n : nat) : bigD * bigD := match n with | O => (x, BigD_0) | S n => let (r, s) := root_loop_alt_mult x n in match BigD_compare (BigD_plus s BigD_1) r with | Gt => (BigD_mult BigD_4 r, BigD_mult BigD_2 s) | _ => (BigD_mult BigD_4 (BigD_plus r (BigD_opp (BigD_plus s BigD_1))), BigD_mult BigD_2 (BigD_plus s BigD_2)) end end.
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers MathClasses.interfaces.additional_operations MathClasses.implementations.dyadics MathClasses.implementations.fast_integers BigZ
coq-community-math-classes/misc/benchmarks_nobuild
coq-community-math-classes
1,166
Fixpoint eval (e: Expr): nat := match e with | Plus a b => eval a + eval b | Mult a b => eval a * eval b | Zero => 0 | One => 1 end.
Coq.Classes.Morphisms Coq.Program.Program Coq.Unicode.Utf8
coq-community-math-classes/quote/classquote
coq-community-math-classes
1,167