File size: 1,636 Bytes
be3fc51
8f622ad
 
c7f6466
8f622ad
 
 
 
 
 
 
c7f6466
 
64c5145
 
 
 
 
 
 
 
 
 
 
 
 
 
c7f6466
64c5145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f622ad
 
 
 
 
 
 
 
 
 
e958de7
 
8f622ad
 
 
 
 
 
c7f6466
8f622ad
 
c7f6466
8f622ad
 
c7f6466
8f622ad
 
c7f6466
8f622ad
c7f6466
8f622ad
c7f6466
8f622ad
 
c7f6466
8f622ad
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
language:
- en
license: mit
tags:
- image-classification
- computer-vision
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
dataset_info:
  features:
  - name: image
    dtype:
      array3_d:
        shape:
        - 128
        - 128
        - 3
        dtype: uint8
  - name: label
    dtype:
      class_label:
        names:
          '0': cats
          '1': dogs
  splits:
  - name: train
    num_bytes: 921696000
    num_examples: 8000
  - name: test
    num_bytes: 230424000
    num_examples: 2000
  download_size: 487392383
  dataset_size: 1152120000
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
---

# Cats and Dogs Image Classification Dataset

This dataset contains images of cats and dogs, intended for image classification tasks. It includes two classes: "cats" and "dogs".

## Dataset Structure

The dataset is structured into two splits:

* **train**: Contains 8000 images for training.
* **test**: Contains 2000 images for testing.

Images are stored in RGB format with a resolution of 128x128 pixels.

## Data Loading and Usage

The dataset can be loaded using the Hugging Face Datasets library:

```python
from datasets import load_dataset

dataset = load_dataset("cats_dogs_dataset")
This will return a DatasetDict object with the train and test splits.

Example Usage
Python

from datasets import load_dataset

dataset = load_dataset("cats_dogs_dataset")

# Access the first training example
example = dataset["train"]

# Print the image and label
print(example["image"])
print(example["label"])