|
--- |
|
language: |
|
- en |
|
tags: |
|
- student performance |
|
- tabular_classification |
|
- multiclass_classification |
|
- UCI |
|
pretty_name: Diamond |
|
size_categories: |
|
- 10K<n<100K |
|
task_categories: |
|
- tabular-classification |
|
configs: |
|
- encoding |
|
- cut |
|
- cut_binary |
|
license: cc |
|
--- |
|
# Diamonds |
|
The [Diamonds dataset](https://www.kaggle.com/datasets/ulrikthygepedersen/diamonds) from Kaggle. |
|
Dataset collecting properties of cut diamonds to determine the cut quality. |
|
|
|
# Configurations and tasks |
|
| **Configuration** | **Task** | Description | |
|
|-------------------|---------------------------|-----------------------------------------------------------------| |
|
| encoding | | Encoding dictionary showing original values of encoded features.| |
|
| cut | Multiclass classification | Predict the cut quality of the diamond. | |
|
| cut_binary | Binary classification | Is the cut quality at least very good?| |
|
|
|
# Usage |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("mstz/diamonds", "cut")["train"] |
|
``` |
|
|
|
# Features |
|
|**Feature** |**Description**| |
|
|-----------------------------------|---------------| |
|
|`carat` | `float32` | |
|
|`color` | `string` | |
|
|`clarity` | `float32` | |
|
|`depth` | `float32` | |
|
|`table` | `float32` | |
|
|`price` | `float32` | |
|
|`observation_point_on_axis_x` | `float32` | |
|
|`observation_point_on_axis_y` | `float32` | |
|
|`observation_point_on_axis_z` | `float32` | |
|
|`cut` | `int8` | |