Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Samoed's picture
Add dataset card
d14b466 verified
---
annotations_creators:
- expert-annotated
language:
- fas
- rus
- zho
license: odc-by
multilinguality: multilingual
source_datasets:
- mteb/neuclir-2023
task_categories:
- text-retrieval
task_ids: []
dataset_info:
- config_name: fas-corpus
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 8275313314
num_examples: 2232016
download_size: 3816764641
dataset_size: 8275313314
- config_name: fas-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 1466410
num_examples: 26662
download_size: 1016379
dataset_size: 1466410
- config_name: fas-queries
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 9779
num_examples: 76
download_size: 7097
dataset_size: 9779
- config_name: rus-corpus
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 14911638472
num_examples: 4627543
download_size: 7487737882
dataset_size: 14911638472
- config_name: rus-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 1409870
num_examples: 25634
download_size: 978928
dataset_size: 1409870
- config_name: rus-queries
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 11204
num_examples: 76
download_size: 8043
dataset_size: 11204
- config_name: zho-corpus
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 6534387728
num_examples: 3179209
download_size: 4519787754
dataset_size: 6534387728
- config_name: zho-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 1520090
num_examples: 27638
download_size: 1055802
dataset_size: 1520090
- config_name: zho-queries
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 5592
num_examples: 76
download_size: 5739
dataset_size: 5592
configs:
- config_name: fas-corpus
data_files:
- split: test
path: fas-corpus/test-*
- config_name: fas-qrels
data_files:
- split: test
path: fas-qrels/test-*
- config_name: fas-queries
data_files:
- split: test
path: fas-queries/test-*
- config_name: rus-corpus
data_files:
- split: test
path: rus-corpus/test-*
- config_name: rus-qrels
data_files:
- split: test
path: rus-qrels/test-*
- config_name: rus-queries
data_files:
- split: test
path: rus-queries/test-*
- config_name: zho-corpus
data_files:
- split: test
path: zho-corpus/test-*
- config_name: zho-qrels
data_files:
- split: test
path: zho-qrels/test-*
- config_name: zho-queries
data_files:
- split: test
path: zho-queries/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NeuCLIR2023Retrieval</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
The task involves identifying and retrieving the documents that are relevant to the queries.
| | |
|---------------|---------------------------------------------|
| Task category | t2t |
| Domains | News, Written |
| Reference | https://neuclir.github.io/ |
Source datasets:
- [mteb/neuclir-2023](https://huggingface.co/datasets/mteb/neuclir-2023)
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_task("NeuCLIR2023Retrieval")
evaluator = mteb.MTEB([task])
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{lawrie2024overview,
archiveprefix = {arXiv},
author = {Dawn Lawrie and Sean MacAvaney and James Mayfield and Paul McNamee and Douglas W. Oard and Luca Soldaini and Eugene Yang},
eprint = {2404.08071},
primaryclass = {cs.IR},
title = {Overview of the TREC 2023 NeuCLIR Track},
year = {2024},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("NeuCLIR2023Retrieval")
desc_stats = task.metadata.descriptive_stats
```
```json
{}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*