aditeyabaral-redis's picture
Upload dataset
624060e verified
|
raw
history blame
12.8 kB
metadata
dataset_info:
  - config_name: all
    features:
      - name: id
        dtype: string
      - name: source_idx
        dtype: int64
      - name: source
        dtype: string
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 255235338
        num_examples: 1047690
      - name: validation
        num_bytes: 1525747
        num_examples: 8405
      - name: test
        num_bytes: 12081158
        num_examples: 62021
    download_size: 160700966
    dataset_size: 268842243
  - config_name: apt
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 556964.1791243993
        num_examples: 3723
      - name: test
        num_bytes: 190920.5678033307
        num_examples: 1252
    download_size: 240496
    dataset_size: 747884.74692773
  - config_name: mrpc
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 929171
        num_examples: 3668
      - name: validation
        num_bytes: 104247
        num_examples: 408
      - name: test
        num_bytes: 435510
        num_examples: 1725
    download_size: 995696
    dataset_size: 1468928
  - config_name: parade
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 1761250
        num_examples: 7550
      - name: validation
        num_bytes: 293719
        num_examples: 1275
      - name: test
        num_bytes: 319262
        num_examples: 1357
    download_size: 769767
    dataset_size: 2374231
  - config_name: paws
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: int8
    splits:
      - name: train
        num_bytes: 150704304
        num_examples: 645652
      - name: test
        num_bytes: 2332165
        num_examples: 10000
    download_size: 108607809
    dataset_size: 153036469
  - config_name: pit2015
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 1345346
        num_examples: 13063
      - name: validation
        num_bytes: 462242
        num_examples: 4727
      - name: test
        num_bytes: 94569
        num_examples: 972
    download_size: 596490
    dataset_size: 1902157
  - config_name: qqp
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 49445436
        num_examples: 363846
      - name: test
        num_bytes: 5492034
        num_examples: 40430
    download_size: 34836571
    dataset_size: 54937470
  - config_name: sick
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 481342
        num_examples: 4439
      - name: validation
        num_bytes: 54519
        num_examples: 495
      - name: test
        num_bytes: 531654
        num_examples: 4906
    download_size: 347239
    dataset_size: 1067515
  - config_name: stsb
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 754791
        num_examples: 5749
      - name: validation
        num_bytes: 216064
        num_examples: 1500
      - name: test
        num_bytes: 169974
        num_examples: 1379
    download_size: 707460
    dataset_size: 1140829
configs:
  - config_name: all
    data_files:
      - split: train
        path: all/train-*
      - split: validation
        path: all/validation-*
      - split: test
        path: all/test-*
  - config_name: apt
    data_files:
      - split: train
        path: apt/train-*
      - split: test
        path: apt/test-*
  - config_name: mrpc
    data_files:
      - split: train
        path: mrpc/train-*
      - split: validation
        path: mrpc/validation-*
      - split: test
        path: mrpc/test-*
  - config_name: parade
    data_files:
      - split: train
        path: parade/train-*
      - split: validation
        path: parade/validation-*
      - split: test
        path: parade/test-*
  - config_name: paws
    data_files:
      - split: train
        path: paws/train-*
      - split: test
        path: paws/test-*
  - config_name: pit2015
    data_files:
      - split: train
        path: pit2015/train-*
      - split: validation
        path: pit2015/validation-*
      - split: test
        path: pit2015/test-*
  - config_name: qqp
    data_files:
      - split: train
        path: qqp/train-*
      - split: test
        path: qqp/test-*
  - config_name: sick
    data_files:
      - split: train
        path: sick/train-*
      - split: validation
        path: sick/validation-*
      - split: test
        path: sick/test-*
  - config_name: stsb
    data_files:
      - split: train
        path: stsb/train-*
      - split: validation
        path: stsb/validation-*
      - split: test
        path: stsb/test-*
task_categories:
  - text-classification
  - sentence-similarity
  - text-ranking
  - text-retrieval
tags:
  - english
  - sentence-similarity
  - sentence-pair-classification
  - semantic-retrieval
  - re-ranking
  - information-retrieval
  - embedding-training
  - semantic-search
  - paraphrase-detection
language:
  - en
size_categories:
  - 1M<n<10M
license: apache-2.0
pretty_name: RedisLangCache SentecePairs v1

Redis LangCache Sentence Pairs Dataset

A large, consolidated collection of English sentence pairs for training and evaluating semantic similarity, retrieval, and re-ranking models. It merges widely used benchmarks into a single schema with consistent fields and ready-made splits.

Dataset Details

Dataset Description

  • Name: langcache-sentencepairs-v1
  • Summary: Sentence-pair dataset created to fine-tune encoder-based embedding and re-ranking models. It combines multiple high-quality corpora spanning diverse styles (short questions, long paraphrases, Twitter, adversarial pairs, technical queries, news headlines, etc.), with both positive and negative examples and preserved splits.
  • Curated by: Redis
  • Shared by: Aditeya Baral
  • Language(s): English
  • License: Apache-2.0
  • Homepage / Repository: https://huggingface.co/datasets/redis/langcache-sentencepairs-v1

Configs and coverage

  • all: Unified view over all sources with extra metadata columns (idx, source_idx).
  • Source-specific configs: apt, mrpc, parade, paws, pit2015, qqp, sick, stsb.

Size & splits (overall)
Total ~1.12M pairs: ~1.05M train, 8.4k validation, 62k test. See per-config sizes in the viewer.

Dataset Sources

  • APT (Adversarial Paraphrasing Task)Paper | Dataset
  • MRPC (Microsoft Research Paraphrase Corpus)Paper | Dataset
  • PARADE (Paraphrase Identification requiring Domain Knowledge)Paper | Dataset
  • PAWS (Paraphrase Adversaries from Word Scrambling)Paper | Dataset
  • PIT2015 (SemEval 2015 Twitter Paraphrase)Website | Dataset
  • QQP (Quora Question Pairs)Website | Dataset
  • SICK (Sentences Involving Compositional Knowledge)Website | Dataset
  • STS-B (Semantic Textual Similarity Benchmark)Website | Dataset

Uses

  • Train/fine-tune sentence encoders for semantic retrieval and re-ranking.
  • Supervised sentence-pair classification tasks like paraphrase detection.
  • Evaluation of semantic similarity and building general-purpose retrieval and ranking systems.

Direct Use

from datasets import load_dataset

# Unified corpus
ds = load_dataset("aditeyabaral-redis/langcache-sentencepairs-v1", "all")

# A single source, e.g., PAWS
paws = load_dataset("aditeyabaral-redis/langcache-sentencepairs-v1", "paws")

# Columns: sentence1, sentence2, label (+ idx, source_idx in 'all')

Out-of-Scope Use

  • Non-English or multilingual modeling: The dataset is entirely in English and will not perform well for training or evaluating multilingual models.
  • Uncalibrated similarity regression: The STS-B portion has been integerized in this release, so it should not be used for fine-grained regression tasks requiring the original continuous similarity scores.

Dataset Structure

Fields

  • sentence1 (string) — First sentence.

  • sentence2 (string) — Second sentence.

  • label (int64) — Task label. 1 ≈ paraphrase/similar, 0 ≈ non-paraphrase/dissimilar. For sources with continuous similarity (e.g., STS-B), labels are integerized in this release; consult the source subset if you need original continuous scores.

  • (config all only):

    • idx (string) — Dataset identifier. Follows the pattern langcache_{split}_{row number}.
    • source_idx (string) — Source-local row id. Follows the pattern {source name}_{split}_{row number}.

Splits

  • train, validation (where available), test — original dataset splits preserved whenever provided by the source.

Schemas by config

  • all: 5 columns (idx, source_idx, sentence1, sentence2, label).
  • All other configs: 3 columns (sentence1, sentence2, label).

Dataset Creation

Curation Rationale

To fine-tune stronger encoder models for retrieval and re-ranking, we curated a large, diverse pool of labeled sentence pairs (positives & negatives) covering multiple real-world styles and domains. Consolidating canonical benchmarks into a single schema reduces engineering overhead and encourages generalization beyond any single dataset.

Source Data

Data Collection and Processing

  • Ingested each selected dataset and preserved original splits when available.
  • Normalized to a common schema; no manual relabeling was performed.
  • Merged into all with added source and source_idx for traceability.

Who are the source data producers?

Original creators of the upstream datasets (e.g., Microsoft Research for MRPC, Quora for QQP, Google Research for PAWS, etc.).

Personal and Sensitive Information

The corpus may include public-text sentences that mention people, organizations, or places (e.g., news, Wikipedia, tweets). It is not intended for identifying or inferring sensitive attributes of individuals. If you require strict PII controls, filter or exclude sources accordingly before downstream use.

Bias, Risks, and Limitations

  • Label noise: Some sources include noisily labeled pairs (e.g., PAWS large weakly-labeled set).
  • Granularity mismatch: STS-B's continuous similarity is represented as integers here; treat with care if you need fine-grained scoring.
  • English-only: Not suitable for multilingual evaluation without adaptation.

Recommendations

  • Use the all configuration for large-scale training, but be aware that some datasets dominate in size (e.g., PAWS, QQP). Apply sampling or weighting if you want balanced learning across domains.
  • Treat STS-B labels with caution: they are integerized in this release. For regression-style similarity scoring, use the original STS-B dataset.
  • This dataset is best suited for training retrieval and re-ranking models. Avoid re-purposing it for unrelated tasks (e.g., user profiling, sensitive attribute prediction, or multilingual training).
  • Track the source field (in the all config) during training to analyze how performance varies by dataset type, which can guide fine-tuning or domain adaptation.

Citation

If you use this dataset, please cite the Hugging Face entry and the original upstream datasets you rely on.

BibTeX:

@misc{langcache_sentencepairs_v1_2025,
  title        = {langcache-sentencepairs-v1},
  author       = {Baral, Aditeya and Redis},
  howpublished = {\url{https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs-v1}},
  year         = {2025},
  note         = {Version 1}
}

Dataset Card Authors

Aditeya Baral

Dataset Card Contact

[email protected]