File size: 6,852 Bytes
fb9bd02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- language_table
- openx
- google_robot
configs:
- config_name: default
data_files: data/*.parquet
---
Language Table (LeRobot) — Embedding-Only Release
(DINOv3 + SigLIP2 image features; EmbeddingGemma task-text features)
This repository packages a re-encoded variant of [IPEC-COMMUNITY/fractal20220817_data_lerobot](https://huggingface.co/datasets/IPEC-COMMUNITY/fractal20220817_data_lerobot) where raw videos are replaced by fixed-length image embeddings, and task strings are augmented with text embeddings. All indices, splits, and semantics remain consistent with the source dataset while storage and I/O are substantially lighter. To make the dataset practical to upload/download and stream from the Hub, we also consolidated tiny per-episode Parquet files into N large Parquet shards under a single data/ folder. The file meta/sharded_index.json preserves a precise mapping from each original episode (referenced by a normalized identifier of the form data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet) to its shard path and row range, so you keep original addressing without paying the small-file tax.
- Robot: google_robot
- Modalities kept: states, actions, timestamps, frame/episode indices, image embeddings, task-text embeddings
- Removed:
- observation.images.image
- License: apache-2.0 (inherits from source)
----------------------------------------------------------------
Quick Stats
From meta/info.json and meta/task_text_embeddings_info.json:
- Episodes: 87,212
- Frames: 3,786,400
- Tasks (unique): 599
- Chunks (original layout): 88 (chunks_size=1000)
- Shards (this release): 64 Parquet files under data/ (see meta/sharded_index.json)
- FPS: 3
- Image embeddings (per frame):
- observation.images.image_dinov3 → float32 [1024] (DINOv3 ViT-L/16 CLS)
- observation.images.image_siglip2 → float32 [768] (SigLIP2-base)
- Task-text embeddings (per unique task):
- embedding → float32 [768] from google/embeddinggemma-300m
- Count: 599 rows (one per task)
Note: This is an embedding-only package. The original pixel arrays listed under “Removed” are dropped.
----------------------------------------------------------------
<details>
<summary><b>Contents</b></summary>
<pre>
.
|-- meta/
| |-- info.json
| |-- sharded_index.json
| |-- tasks.jsonl
| |-- episodes.jsonl
| `-- task_text_embeddings_info.json
|-- data/
| |-- shard-00000-of-000NN.parquet
| |-- shard-00001-of-000NN.parquet
| |-- ...
| `-- task_text_embeddings.parquet
`-- README.md
</pre>
</details>
----------------------------------------------------------------
How This Was Generated (Reproducible Pipeline)
1) Episode → Image Embeddings (drop pixels)
convert_lerobot_to_embeddings_mono.py (GPU-accelerated preprocessing).
Adds:
- observation.images.image_dinov3 (float32[1024])
- observation.images.image_siglip2 (float32[768])
Removes:
- observation.images.image
2) Task-Text Embeddings (one row per unique task)
build_task_text_embeddings.py with SentenceTransformer("google/embeddinggemma-300m") → data/task_text_embeddings.parquet + meta/task_text_embeddings_info.json.
3) Data Consolidation (this release)
All per-episode Parquets were consolidated into N large Parquet shards in one data/ folder.
- The index meta/sharded_index.json records, for each episode, its normalized source identifier data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet, the destination shard path, and the (row_offset, num_rows) range inside that shard.
- This preserves original addressing while making Hub sync/clone/stream far faster and more reliable.
----------------------------------------------------------------
Metadata (Excerpts)
meta/task_text_embeddings_info.json
~~~json
{
"model": "google/embeddinggemma-300m",
"dimension": 768,
"normalized": true,
"count": 599,
"file": "task_text_embeddings.parquet"
}
~~~
meta/info.json (embedding-only + shards)
~~~json
{
"codebase_version": "v2.0-embeddings-sharded",
"robot_type": "google_robot",
"total_episodes": 87212,
"total_frames": 3786400,
"total_tasks": 599,
"total_videos": 87212,
"total_chunks": 88,
"chunks_size": 1000,
"fps": 3,
"splits": {
"train": "0:87212"
},
"data_path": "data/shard-{shard_id:05d}-of-{num_shards:05d}.parquet",
"features": {
"observation.state": {
"dtype": "float32",
"shape": [
8
],
"names": {
"motors": [
"x",
"y",
"z",
"rx",
"ry",
"rz",
"rw",
"gripper"
]
}
},
"action": {
"dtype": "float32",
"shape": [
7
],
"names": {
"motors": [
"x",
"y",
"z",
"roll",
"pitch",
"yaw",
"gripper"
]
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"observation.images.image_dinov3": {
"dtype": "float32",
"shape": [
1024
],
"names": null
},
"observation.images.image_siglip2": {
"dtype": "float32",
"shape": [
768
],
"names": null
}
},
"video_keys": [
"observation.images.image"
],
"num_shards": 64,
"index_path": "meta/sharded_index.json"
}
~~~
----------------------------------------------------------------
Environment & Dependencies
Python ≥ 3.9 • PyTorch ≥ 2.1 • transformers • sentence-transformers • pyarrow • tqdm • decord (and optionally av)
----------------------------------------------------------------
Provenance, License, and Citation
- Source dataset: [IPEC-COMMUNITY/fractal20220817_data_lerobot](https://huggingface.co/datasets/IPEC-COMMUNITY/fractal20220817_data_lerobot)
- License: apache-2.0 (inherits from the source)
- Encoders to cite:
- facebook/dinov3-vitl16-pretrain-lvd1689m
- google/siglip2-base-patch16-384
- google/embeddinggemma-300m
----------------------------------------------------------------
Changelog
- v2.0-embeddings-sharded — Replaced video tensors with DINOv3 + SigLIP2 features; added EmbeddingGemma task-text embeddings; consolidated per-episode Parquets into N shards with a repo-local index; preserved original indexing/splits via normalized episode identifiers.
|