File size: 6,852 Bytes
fb9bd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- language_table
- openx
- google_robot
configs:
- config_name: default
  data_files: data/*.parquet
---
Language Table (LeRobot) — Embedding-Only Release
(DINOv3 + SigLIP2 image features; EmbeddingGemma task-text features)

This repository packages a re-encoded variant of [IPEC-COMMUNITY/fractal20220817_data_lerobot](https://huggingface.co/datasets/IPEC-COMMUNITY/fractal20220817_data_lerobot) where raw videos are replaced by fixed-length image embeddings, and task strings are augmented with text embeddings. All indices, splits, and semantics remain consistent with the source dataset while storage and I/O are substantially lighter. To make the dataset practical to upload/download and stream from the Hub, we also consolidated tiny per-episode Parquet files into N large Parquet shards under a single data/ folder. The file meta/sharded_index.json preserves a precise mapping from each original episode (referenced by a normalized identifier of the form data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet) to its shard path and row range, so you keep original addressing without paying the small-file tax.

- Robot: google_robot
- Modalities kept: states, actions, timestamps, frame/episode indices, image embeddings, task-text embeddings
- Removed:
- observation.images.image
- License: apache-2.0 (inherits from source)

----------------------------------------------------------------

Quick Stats

From meta/info.json and meta/task_text_embeddings_info.json:

- Episodes: 87,212
- Frames: 3,786,400
- Tasks (unique): 599
- Chunks (original layout): 88 (chunks_size=1000)
- Shards (this release): 64 Parquet files under data/ (see meta/sharded_index.json)
- FPS: 3
- Image embeddings (per frame):
  - observation.images.image_dinov3 → float32 [1024] (DINOv3 ViT-L/16 CLS)
  - observation.images.image_siglip2 → float32 [768] (SigLIP2-base)
- Task-text embeddings (per unique task):
  - embedding → float32 [768] from google/embeddinggemma-300m
  - Count: 599 rows (one per task)

Note: This is an embedding-only package. The original pixel arrays listed under “Removed” are dropped.

----------------------------------------------------------------

<details>
  <summary><b>Contents</b></summary>

<pre>
. 
|-- meta/
|   |-- info.json
|   |-- sharded_index.json
|   |-- tasks.jsonl
|   |-- episodes.jsonl
|   `-- task_text_embeddings_info.json
|-- data/
|   |-- shard-00000-of-000NN.parquet
|   |-- shard-00001-of-000NN.parquet
|   |-- ...
|   `-- task_text_embeddings.parquet
`-- README.md
</pre>
</details>

----------------------------------------------------------------

How This Was Generated (Reproducible Pipeline)

1) Episode → Image Embeddings (drop pixels)
convert_lerobot_to_embeddings_mono.py (GPU-accelerated preprocessing).
Adds:
- observation.images.image_dinov3 (float32[1024])
- observation.images.image_siglip2 (float32[768])
Removes:
- observation.images.image

2) Task-Text Embeddings (one row per unique task)
build_task_text_embeddings.py with SentenceTransformer("google/embeddinggemma-300m") → data/task_text_embeddings.parquet + meta/task_text_embeddings_info.json.

3) Data Consolidation (this release)
All per-episode Parquets were consolidated into N large Parquet shards in one data/ folder.
- The index meta/sharded_index.json records, for each episode, its normalized source identifier data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet, the destination shard path, and the (row_offset, num_rows) range inside that shard.
- This preserves original addressing while making Hub sync/clone/stream far faster and more reliable.

----------------------------------------------------------------

Metadata (Excerpts)

meta/task_text_embeddings_info.json

~~~json
{
  "model": "google/embeddinggemma-300m",
  "dimension": 768,
  "normalized": true,
  "count": 599,
  "file": "task_text_embeddings.parquet"
}
~~~


meta/info.json (embedding-only + shards)

~~~json
{
  "codebase_version": "v2.0-embeddings-sharded",
  "robot_type": "google_robot",
  "total_episodes": 87212,
  "total_frames": 3786400,
  "total_tasks": 599,
  "total_videos": 87212,
  "total_chunks": 88,
  "chunks_size": 1000,
  "fps": 3,
  "splits": {
    "train": "0:87212"
  },
  "data_path": "data/shard-{shard_id:05d}-of-{num_shards:05d}.parquet",
  "features": {
    "observation.state": {
      "dtype": "float32",
      "shape": [
        8
      ],
      "names": {
        "motors": [
          "x",
          "y",
          "z",
          "rx",
          "ry",
          "rz",
          "rw",
          "gripper"
        ]
      }
    },
    "action": {
      "dtype": "float32",
      "shape": [
        7
      ],
      "names": {
        "motors": [
          "x",
          "y",
          "z",
          "roll",
          "pitch",
          "yaw",
          "gripper"
        ]
      }
    },
    "timestamp": {
      "dtype": "float32",
      "shape": [
        1
      ],
      "names": null
    },
    "frame_index": {
      "dtype": "int64",
      "shape": [
        1
      ],
      "names": null
    },
    "episode_index": {
      "dtype": "int64",
      "shape": [
        1
      ],
      "names": null
    },
    "index": {
      "dtype": "int64",
      "shape": [
        1
      ],
      "names": null
    },
    "task_index": {
      "dtype": "int64",
      "shape": [
        1
      ],
      "names": null
    },
    "observation.images.image_dinov3": {
      "dtype": "float32",
      "shape": [
        1024
      ],
      "names": null
    },
    "observation.images.image_siglip2": {
      "dtype": "float32",
      "shape": [
        768
      ],
      "names": null
    }
  },
  "video_keys": [
    "observation.images.image"
  ],
  "num_shards": 64,
  "index_path": "meta/sharded_index.json"
}
~~~

----------------------------------------------------------------

Environment & Dependencies

Python ≥ 3.9 • PyTorch ≥ 2.1 • transformers • sentence-transformers • pyarrow • tqdm • decord (and optionally av)

----------------------------------------------------------------

Provenance, License, and Citation

- Source dataset: [IPEC-COMMUNITY/fractal20220817_data_lerobot](https://huggingface.co/datasets/IPEC-COMMUNITY/fractal20220817_data_lerobot)
- License: apache-2.0 (inherits from the source)
- Encoders to cite:
  - facebook/dinov3-vitl16-pretrain-lvd1689m
  - google/siglip2-base-patch16-384
  - google/embeddinggemma-300m

----------------------------------------------------------------

Changelog

- v2.0-embeddings-sharded — Replaced video tensors with DINOv3 + SigLIP2 features; added EmbeddingGemma task-text embeddings; consolidated per-episode Parquets into N shards with a repo-local index; preserved original indexing/splits via normalized episode identifiers.