|
|
--- |
|
|
license: mit |
|
|
dataset_info: |
|
|
features: |
|
|
- name: image |
|
|
dtype: image |
|
|
- name: text |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train_shard_000 |
|
|
num_bytes: 3084316377 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_001 |
|
|
num_bytes: 3107698844 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_002 |
|
|
num_bytes: 3105945625 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_003 |
|
|
num_bytes: 3064000374 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_004 |
|
|
num_bytes: 3086188608 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_005 |
|
|
num_bytes: 3050610859 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_006 |
|
|
num_bytes: 2913162440 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_007 |
|
|
num_bytes: 2919830153 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_008 |
|
|
num_bytes: 3038788195 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_009 |
|
|
num_bytes: 3204065572 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_010 |
|
|
num_bytes: 3068610931 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_011 |
|
|
num_bytes: 2933208907 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_012 |
|
|
num_bytes: 2891239225 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_013 |
|
|
num_bytes: 3091212463 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_014 |
|
|
num_bytes: 2921655324 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_015 |
|
|
num_bytes: 2979943202 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_016 |
|
|
num_bytes: 2868563209 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_017 |
|
|
num_bytes: 3147002484 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_018 |
|
|
num_bytes: 3104107514 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_019 |
|
|
num_bytes: 2926535712.0 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_020 |
|
|
num_bytes: 2990904342.0 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_021 |
|
|
num_bytes: 3102893465.0 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_022 |
|
|
num_bytes: 3059280331.0 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_023 |
|
|
num_bytes: 3090584727.0 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_024 |
|
|
num_bytes: 2926357592.0 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_025 |
|
|
num_bytes: 2944175013.0 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_026 |
|
|
num_bytes: 3007380998.0 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_027 |
|
|
num_bytes: 3135483954.0 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_028 |
|
|
num_bytes: 3025648842.0 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_029 |
|
|
num_bytes: 2919552229.0 |
|
|
num_examples: 5000 |
|
|
- name: train_shard_030 |
|
|
num_bytes: 3060131937.0 |
|
|
num_examples: 5000 |
|
|
download_size: 93767992416 |
|
|
dataset_size: 93769079448.0 |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: train_shard_000 |
|
|
path: data/train_shard_000-* |
|
|
- split: train_shard_001 |
|
|
path: data/train_shard_001-* |
|
|
- split: train_shard_002 |
|
|
path: data/train_shard_002-* |
|
|
- split: train_shard_003 |
|
|
path: data/train_shard_003-* |
|
|
- split: train_shard_004 |
|
|
path: data/train_shard_004-* |
|
|
- split: train_shard_005 |
|
|
path: data/train_shard_005-* |
|
|
- split: train_shard_006 |
|
|
path: data/train_shard_006-* |
|
|
- split: train_shard_007 |
|
|
path: data/train_shard_007-* |
|
|
- split: train_shard_008 |
|
|
path: data/train_shard_008-* |
|
|
- split: train_shard_009 |
|
|
path: data/train_shard_009-* |
|
|
- split: train_shard_010 |
|
|
path: data/train_shard_010-* |
|
|
- split: train_shard_011 |
|
|
path: data/train_shard_011-* |
|
|
- split: train_shard_012 |
|
|
path: data/train_shard_012-* |
|
|
- split: train_shard_013 |
|
|
path: data/train_shard_013-* |
|
|
- split: train_shard_014 |
|
|
path: data/train_shard_014-* |
|
|
- split: train_shard_015 |
|
|
path: data/train_shard_015-* |
|
|
- split: train_shard_016 |
|
|
path: data/train_shard_016-* |
|
|
- split: train_shard_017 |
|
|
path: data/train_shard_017-* |
|
|
- split: train_shard_018 |
|
|
path: data/train_shard_018-* |
|
|
- split: train_shard_019 |
|
|
path: data/train_shard_019-* |
|
|
- split: train_shard_020 |
|
|
path: data/train_shard_020-* |
|
|
- split: train_shard_021 |
|
|
path: data/train_shard_021-* |
|
|
- split: train_shard_022 |
|
|
path: data/train_shard_022-* |
|
|
- split: train_shard_023 |
|
|
path: data/train_shard_023-* |
|
|
- split: train_shard_024 |
|
|
path: data/train_shard_024-* |
|
|
- split: train_shard_025 |
|
|
path: data/train_shard_025-* |
|
|
- split: train_shard_026 |
|
|
path: data/train_shard_026-* |
|
|
- split: train_shard_027 |
|
|
path: data/train_shard_027-* |
|
|
- split: train_shard_028 |
|
|
path: data/train_shard_028-* |
|
|
- split: train_shard_029 |
|
|
path: data/train_shard_029-* |
|
|
- split: train_shard_030 |
|
|
path: data/train_shard_030-* |
|
|
pretty_name: tamily 1 |
|
|
language: |
|
|
- ta |
|
|
source_datasets: |
|
|
- sasicodes/solvari-1 |
|
|
task_categories: |
|
|
- image-to-text |
|
|
tags: |
|
|
- Vaṭṭeḻuttu |
|
|
--- |
|
|
|
|
|
|
|
|
# Tamily-1: Ancient Tamil OCR Synthetic Dataset |
|
|
|
|
|
## Description |
|
|
|
|
|
- **Repository:** [sasicodes/tamily-1](https://huggingface.co/datasets/sasicodes/tamily-1) |
|
|
- **Point of Contact:** [@sasicodes](https://huggingface.co/sasicodes) |
|
|
|
|
|
### Summary |
|
|
|
|
|
Tamily-1 is an ancient Tamil OCR synthetic dataset generated from the first 200,000 rows of [Solvari-1](https://huggingface.co/datasets/sasicodes/solvari-1), a large Tamil text corpus. The dataset contains rendered images of Tamil text with various augmentations and styles, making it suitable for training OCR models. |
|
|
|
|
|
### Fields |
|
|
|
|
|
- `image`: PNG image of rendered Tamil text |
|
|
- `text`: Original Tamil text |
|
|
|
|
|
### Data Splits |
|
|
|
|
|
The dataset is split into shards of 5,000 samples each, named as `train_shard_XXX`. |
|
|
|
|
|
#### Annotation process |
|
|
|
|
|
Each text is rendered with: |
|
|
- Random paper style (Palm Leaf, Pale Palm Leaf, Red Stone, White Stone, Paper) |
|
|
- Random background style (No Lines, With Lines, Blurred, With Lines and Noise) |
|
|
- Random augmentation (Rotation, Perspective, Stain, Ink Bleed) |
|
|
|
|
|
### License |
|
|
|
|
|
MIT License |
|
|
|
|
|
|
|
|
```bibtex |
|
|
@misc{tamily-1, |
|
|
author = {sasicodes}, |
|
|
title = {Tamily-1: Ancient Tamil OCR Synthetic Dataset}, |
|
|
year = {2025}, |
|
|
publisher = {Hugging Face}, |
|
|
journal = {Hugging Face Hub}, |
|
|
howpublished = {\url{https://huggingface.co/datasets/sasicodes/tamily-1}} |
|
|
} |
|
|
``` |