JamC-QA / README.md
teruo6939's picture
Upload dataset
4ef0150 verified
|
raw
history blame
5.47 kB
metadata
license: cc-by-sa-4.0
task_categories:
  - question-answering
  - multiple-choice
language:
  - ja
configs:
  - config_name: v1.0
    data_files:
      - split: test
        path: v1.0/test-*
      - split: dev
        path: v1.0/dev-*
dataset_info:
  config_name: v1.0
  features:
    - name: qid
      dtype: string
    - name: category
      dtype: string
    - name: question
      dtype: string
    - name: choice0
      dtype: string
    - name: choice1
      dtype: string
    - name: choice2
      dtype: string
    - name: choice3
      dtype: string
    - name: answer_index
      dtype: int64
  splits:
    - name: dev
      num_bytes: 7097
      num_examples: 32
    - name: test
      num_bytes: 516185
      num_examples: 2309
  download_size: 588759
  dataset_size: 523282

Dataset Card for JamC-QA

English/Japanese

Dataset Summary

This benchmark evaluates knowledge specific to Japan through multiple-choice questions. It covers eight categories: culture, custom, regional identity, geography, history, government, law, and healthcare. Achieving high performance requires broad and detailed understanding of Japan across these domains.

Leaderboard

Exact match score:

Model Micro-average culture custom regional identity geography history government law healthcare
sarashina2-8x70b 0.7364 0.7220 0.8088 0.7855 0.6522 0.7839 0.7719 0.6436 0.8462
sarashina2-70b 0.7245 0.6988 0.7892 0.7556 0.6558 0.7781 0.7544 0.6733 0.7885
Llama-3.3-Swallow-70B-v0.4 0.6950 0.6894 0.7353 0.6185 0.5688 0.7781 0.7719 0.7459 0.8462
RakutenAI-2.0-8x7B 0.6160 0.6056 0.6814 0.6160 0.4855 0.6888 0.6754 0.5941 0.6923
Mixtral-8x7B-v0.1-japanese 0.5950 0.5885 0.7500 0.5985 0.4601 0.6052 0.6404 0.5710 0.7308
plamo-100b 0.5908 0.6102 0.6422 0.6384 0.4565 0.6398 0.5526 0.5182 0.6731
llm-jp-3.1-8x13b 0.5737 0.5839 0.6275 0.6060 0.4674 0.6110 0.6404 0.4884 0.6538
Meta-Llama-3.1-405B 0.5724 0.5699 0.5245 0.4688 0.5435 0.6571 0.6579 0.6403 0.5962
Nemotron-4-340B-Base 0.5600 0.5761 0.6176 0.5062 0.4601 0.5821 0.6491 0.5776 0.6346
Qwen2.5-72B 0.5421 0.5419 0.6324 0.4763 0.4746 0.5677 0.6053 0.5644 0.6154

Languages

Japanese

Dataset Structure

Data Instances

An example from culture category looks as follows:

{
  "qid": "jamcqa_test_culture_00001",
  "category": "culture",
  "question": "「狂った世で気が狂うなら気は確かだ」の名言を残した映画はどれ?",
  "choice0": "乱",
  "choice1": "羅生門",
  "choice2": "隠し砦の三悪人",
  "choice3": "影武者",
  "answer_index": 0,
}

Data Fields

  • qid (str): A unique identifier for each question.
  • category (str): The category of the question.
    • culture, custom, regional identity, geography, history, government, law, healthcare
  • question (str): The question text.
    • Converted from full-width to half-width characters, excluding katakana characters.
    • Does not contain any line breaks (\n).
    • Leading and trailing whitespace is removed.
  • choice{0..3} (str): Four answer options (choice0 to choice3).
    • Converted from full-width to half-width characters, excluding katakana characters.
    • Does not contain any line breaks (\n).
    • Leading and trailing whitespace is removed.
  • answer_index (int): The index of the correct answer among choice0 to choice3 (0–3).

Data Splits

  • dev: 7 examples, meant for few-shot setting
  • test: there are 2,341 examples
Category Number of Questions
culture 644
custom 204
regional identity 401
geography 276
history 347
government 114
law 303
healthcare 52
total 2,341

Licensing Information

How to use

$ python
>>> import datasets
>>> jamcqa_test = datasets.load_dataset('sbintuitions/JamC-QA', 'v1.0', split='test')
>>> print(jamcqa_test)
Dataset({
    features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
    num_rows: 2341
})
>>> print(jamcqa_test[0])
{'qid': 'jamcqa_test_culture_00001', 'category': '文化', 'question': '「狂った世で気が狂うなら気は確かだ」の名言を残した映画はどれ?', 'choice0': '乱', 'choice1': '羅生門', 'choice2': '隠し砦の三悪人', 'choice3': '影武者', 'answer_index': 0}
>>> 

Citation Information

@inproceedings{Oka2025,
  author={岡 照晃, 柴田 知秀, 吉田 奈央},
  title={JamC-QA: 日本固有の知識を問う多肢選択式質問応答ベンチマークの構築},
  year={2025},
  month={March},
  booktitle={言語処理学会第31回年次大会(NLP2025)},
  pages={839--844},
}