Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

IsoNet++ Benchmark Dataset

The IsoNet++ Benchmark is a subgraph retrieval benchmark derived from TUDataset graph datasets including:

  • AIDS
  • MUTAG
  • PTC (FM, FR, MM, MR)

The benchmark is used to evaluate models that learn graph representations for:

  • Graph similarity search
  • Subgraph matching
  • Retrieval at scale

This benchmark was introduced to evaluate the IsoNet++ model.


Dataset Structure

isonetpp-benchmark/
├─ corpus/                      # Searchable  graph collections
│   ├─ aids240k_corpus_subgraphs.pkl
│   ├─ mutag240k_corpus_subgraphs.pkl
│   ├─ ptc_fm240k_corpus_subgraphs.pkl
│   ├─ ptc_fr240k_corpus_subgraphs.pkl
│   ├─ ptc_mm240k_corpus_subgraphs.pkl
│   └─ ptc_mr240k_corpus_subgraphs.pkl
└─ splits/                      # Query → relevance evaluation sets
    ├─ train/
    │   ├─ train_<dataset>_query_subgraphs.pkl
    │   └─ train_<dataset>_rel_nx_is_subgraph_iso.pkl
    ├─ val/
    │   ├─ val_<dataset>_query_subgraphs.pkl
    │   └─ val_<dataset>_rel_nx_is_subgraph_iso.pkl
    └─ test/
        ├─ test_<dataset>_query_subgraphs.pkl
        └─ test_<dataset>_rel_nx_is_subgraph_iso.pkl

Where <dataset>{aids240k, mutag240k, ptc_fm240k, ptc_fr240k, ptc_mm240k, ptc_mr240k}.


Data Format

All .pkl files use Python pickle serialization:

File Pattern Description
*_corpus_subgraphs.pkl List of NetworkX graphs representing the retrieval corpus
*_query_subgraphs.pkl List of NetworkX graphs serving as query graphs
*_rel_nx_is_subgraph_iso.pkl Binary labels from exact subgraph isomorphism (NetworkX VF2)

Load Examples

Load Corpus

from huggingface_hub import hf_hub_download
import pickle

path = hf_hub_download(
    "structlearning/isonetpp-benchmark",
    filename="large_dataset/corpus/aids240k_corpus_subgraphs.pkl",
    repo_type="dataset"
)
with open(path, "rb") as f:
    corpus_graphs = pickle.load(f)

Load Query Split

from huggingface_hub import hf_hub_download
import pickle

queries = pickle.load(open(
    hf_hub_download("structlearning/isonetpp-benchmark",
                    filename="large_dataset/splits/train/train_aids240k_query_subgraphs.pkl",
                    repo_type="dataset"),
    "rb"
))

labels = pickle.load(open(
    hf_hub_download("structlearning/isonetpp-benchmark",
                    filename="large_dataset/splits/train/train_aids240k_rel_nx_is_subgraph_iso.pkl",
                    repo_type="dataset"),
    "rb"
))

Intended Use

This dataset is suitable for:

  • Graph retrieval model evaluation
  • Learning subgraph-aware representations
  • Benchmarking hashing, GNN-based retrieval systems
  • Reproducing IsoNet++ results

Citation

If you use this dataset in research, please cite:

@inproceedings{ramachandraniteratively,
  title={Iteratively Refined Early Interaction Alignment for Subgraph Matching based Graph Retrieval},
  author={Ramachandran, Ashwin and Raj, Vaibhav and Roy, Indradyumna and Chakrabarti, Soumen and De, Abir},
  booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems}
}

License

This dataset is released under CC-BY-4.0.

Downloads last month
162

Models trained or fine-tuned on structlearning/isonetpp-benchmark