structlearning/isonetpp-gmn_match-aids-large
Updated
•
76
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
The IsoNet++ Benchmark is a subgraph retrieval benchmark derived from TUDataset graph datasets including:
The benchmark is used to evaluate models that learn graph representations for:
This benchmark was introduced to evaluate the IsoNet++ model.
isonetpp-benchmark/
├─ corpus/ # Searchable graph collections
│ ├─ aids240k_corpus_subgraphs.pkl
│ ├─ mutag240k_corpus_subgraphs.pkl
│ ├─ ptc_fm240k_corpus_subgraphs.pkl
│ ├─ ptc_fr240k_corpus_subgraphs.pkl
│ ├─ ptc_mm240k_corpus_subgraphs.pkl
│ └─ ptc_mr240k_corpus_subgraphs.pkl
└─ splits/ # Query → relevance evaluation sets
├─ train/
│ ├─ train_<dataset>_query_subgraphs.pkl
│ └─ train_<dataset>_rel_nx_is_subgraph_iso.pkl
├─ val/
│ ├─ val_<dataset>_query_subgraphs.pkl
│ └─ val_<dataset>_rel_nx_is_subgraph_iso.pkl
└─ test/
├─ test_<dataset>_query_subgraphs.pkl
└─ test_<dataset>_rel_nx_is_subgraph_iso.pkl
Where <dataset> ∈ {aids240k, mutag240k, ptc_fm240k, ptc_fr240k, ptc_mm240k, ptc_mr240k}.
All .pkl files use Python pickle serialization:
| File Pattern | Description |
|---|---|
*_corpus_subgraphs.pkl |
List of NetworkX graphs representing the retrieval corpus |
*_query_subgraphs.pkl |
List of NetworkX graphs serving as query graphs |
*_rel_nx_is_subgraph_iso.pkl |
Binary labels from exact subgraph isomorphism (NetworkX VF2) |
from huggingface_hub import hf_hub_download
import pickle
path = hf_hub_download(
"structlearning/isonetpp-benchmark",
filename="large_dataset/corpus/aids240k_corpus_subgraphs.pkl",
repo_type="dataset"
)
with open(path, "rb") as f:
corpus_graphs = pickle.load(f)
from huggingface_hub import hf_hub_download
import pickle
queries = pickle.load(open(
hf_hub_download("structlearning/isonetpp-benchmark",
filename="large_dataset/splits/train/train_aids240k_query_subgraphs.pkl",
repo_type="dataset"),
"rb"
))
labels = pickle.load(open(
hf_hub_download("structlearning/isonetpp-benchmark",
filename="large_dataset/splits/train/train_aids240k_rel_nx_is_subgraph_iso.pkl",
repo_type="dataset"),
"rb"
))
This dataset is suitable for:
If you use this dataset in research, please cite:
@inproceedings{ramachandraniteratively,
title={Iteratively Refined Early Interaction Alignment for Subgraph Matching based Graph Retrieval},
author={Ramachandran, Ashwin and Raj, Vaibhav and Roy, Indradyumna and Chakrabarti, Soumen and De, Abir},
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems}
}
This dataset is released under CC-BY-4.0.