mistral-7b-instruct-v0.3-mimic4-adapt-l2r-multilabel-plantclassify
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the None dataset. It achieves the following results on the evaluation set:
- F1 Micro: 0.0173
- F1 Macro: 0.0083
- Precision At 5: 0.4191
- Recall At 5: 0.0999
- Precision At 8: 0.3571
- Recall At 8: 0.1335
- Precision At 15: 0.2744
- Recall At 15: 0.1864
- Rare F1 Micro: 0.0097
- Rare F1 Macro: 0.0063
- Rare Precision: 0.0049
- Rare Recall: 0.6434
- Rare Precision At 5: 0.1862
- Rare Recall At 5: 0.0670
- Rare Precision At 8: 0.1513
- Rare Recall At 8: 0.0868
- Rare Precision At 15: 0.1107
- Rare Recall At 15: 0.1172
- Not Rare F1 Micro: 0.1361
- Not Rare F1 Macro: 0.1312
- Not Rare Precision: 0.0730
- Not Rare Recall: 0.9997
- Not Rare Precision At 5: 0.4268
- Not Rare Recall At 5: 0.2761
- Not Rare Precision At 8: 0.3573
- Not Rare Recall At 8: 0.3544
- Not Rare Precision At 15: 0.2682
- Not Rare Recall At 15: 0.4784
- Loss: -2.5098
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -2.7793 | 0.9981 | 262 | 0.0114 | 0.0060 | 0.3790 | 0.0897 | 0.3251 | 0.1194 | 0.2546 | 0.1696 | 0.0065 | 0.0040 | 0.0033 | 0.7152 | 0.1317 | 0.0472 | 0.1068 | 0.0602 | 0.0780 | 0.0804 | 0.1354 | 0.1308 | 0.0726 | 1.0 | 0.3727 | 0.2367 | 0.3162 | 0.3110 | 0.2446 | 0.4322 | -2.3806 |
| -3.0203 | 1.9981 | 524 | 0.0143 | 0.0070 | 0.4135 | 0.0996 | 0.3589 | 0.1343 | 0.2777 | 0.1888 | 0.0082 | 0.0050 | 0.0041 | 0.6913 | 0.1803 | 0.0641 | 0.1481 | 0.0829 | 0.1086 | 0.1116 | 0.1356 | 0.1309 | 0.0728 | 0.9999 | 0.3987 | 0.2581 | 0.3407 | 0.3388 | 0.2602 | 0.4678 | -2.4964 |
| -3.2253 | 2.9981 | 786 | 0.0122 | 0.0069 | 0.4385 | 0.1062 | 0.3724 | 0.1403 | 0.2868 | 0.1941 | 0.0071 | 0.0050 | 0.0036 | 0.7429 | 0.1983 | 0.0713 | 0.1572 | 0.0898 | 0.1142 | 0.1200 | 0.1355 | 0.1308 | 0.0727 | 1.0 | 0.4206 | 0.2727 | 0.3544 | 0.3536 | 0.2707 | 0.4839 | -2.5382 |
| -3.5758 | 3.9981 | 1048 | 0.0166 | 0.0082 | 0.4336 | 0.1040 | 0.3683 | 0.1379 | 0.2819 | 0.1919 | 0.0094 | 0.0062 | 0.0047 | 0.6661 | 0.1956 | 0.0704 | 0.1583 | 0.0905 | 0.1155 | 0.1224 | 0.1358 | 0.1310 | 0.0728 | 0.9999 | 0.4260 | 0.2760 | 0.3564 | 0.3548 | 0.2686 | 0.4780 | -2.5326 |
| -3.9755 | 4.9981 | 1310 | 0.0173 | 0.0083 | 0.4191 | 0.0999 | 0.3571 | 0.1335 | 0.2744 | 0.1864 | 0.0097 | 0.0063 | 0.0049 | 0.6434 | 0.1862 | 0.0670 | 0.1513 | 0.0868 | 0.1107 | 0.1172 | 0.1361 | 0.1312 | 0.0730 | 0.9997 | 0.4268 | 0.2761 | 0.3573 | 0.3544 | 0.2682 | 0.4784 | -2.5098 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for deb101/mistral-7b-instruct-v0.3-mimic4-adapt-l2r-multilabel-plantclassify
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3