demoversion's picture
Add Model (#1)
5b22dce verified
|
raw
history blame
2.81 kB
metadata
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
  - generated_from_trainer
datasets:
  - demoversion/cf-cpp-to-python-code-generation
model-index:
  - name: outputs/cf-llm-finetune-llama-3.2-3b-lora
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.10.0

base_model: meta-llama/Llama-3.2-3B-Instruct

load_in_8bit: true
load_in_4bit: false

datasets:
  - path: ./data/train_openai_response_transformed.jsonl
    type: chat_template

    field_messages: messages
    message_property_mappings:
      role: role
      content: content

val_file: ./data/val_openai_response_transformed.jsonl
val_set_size: 0.0
output_dir: ./outputs/cf-llm-finetune-llama-3.2-3b-lora

adapter: lora
lora_model_dir:

sequence_len: 4096
sample_packing: false
eval_sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4

optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

bf16: auto
tf32: false

gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: false

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
  pad_token: "<|end_of_text|>"

outputs/cf-llm-finetune-llama-3.2-3b-lora

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the ./data/train_openai_response_transformed.jsonl dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 688

Training results

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2