EmbeddingGemma-300M Fine-tuned for Biblical Text Search (ONNX)

This is the ONNX version of our fine-tuned EmbeddingGemma-300M model specialized for biblical text search and retrieval. This version is optimized for web deployment using transformers.js.

Model Performance

  • Accuracy@1: 12.00% (13x improvement over base model)
  • Accuracy@3: 15.00%
  • Accuracy@10: 31.00%
  • Training Steps: 25 (optimal stopping point)
  • Base Model Accuracy@1: 0.91%

Usage with Transformers.js

import { AutoTokenizer, AutoModel } from '@huggingface/transformers';

// Load the model
const model = await AutoModel.from_pretrained('dpshade22/embeddinggemma-scripture-v1-onnx');
const tokenizer = await AutoTokenizer.from_pretrained('dpshade22/embeddinggemma-scripture-v1-onnx');

// Encode queries (use search_query: prefix)
const query = "search_query: What is love?";
const query_embedding = await model.encode([query]);

// Encode documents (use search_document: prefix)  
const document = "search_document: Love is patient and kind";
const doc_embedding = await model.encode([document]);

Prefixes

For optimal performance, use these prefixes:

  • Queries: "search_query: your question here"
  • Documents: "search_document: scripture text here"

Model Details

  • Base Model: google/embeddinggemma-300m
  • Training Data: 26,276 biblical text pairs
  • Training Steps: 25 steps (optimal stopping point)
  • Learning Rate: 2.0e-04
  • Batch Size: 8
  • Output Dimensions: 768D (supports Matryoshka 384D, 128D)
  • ONNX Conversion: Using nixiesearch/onnx-convert specialized tool

Training Details

  • Training Data: 26,276 biblical text pairs
  • Learning Rate: 2.0e-04
  • Batch Size: 8
  • Training Strategy: Early stopping at 25 steps to prevent overfitting
  • Output Dimensions: 768D (supports Matryoshka 384D, 128D)

Intended Use

This model is designed for:

  • Biblical text search and retrieval in web applications
  • Finding relevant scripture passages
  • Semantic similarity of religious texts
  • Question answering on biblical topics
  • Offline PWA applications using transformers.js

Conversion Details

  • Converted using: nixiesearch/onnx-convert specialized tool
  • ONNX Opset: 17
  • Optimization Level: 1
  • Max difference from original: 1.9e-05 (within acceptable tolerance)

Related Models

  • Original PyTorch version: dpshade22/embeddinggemma-scripture-v1
  • Base model: google/embeddinggemma-300m
  • Reference ONNX: onnx-community/embeddinggemma-300m-ONNX
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support