EmbeddingGemma-300M Fine-tuned for Biblical Text Search (ONNX)
This is the ONNX version of our fine-tuned EmbeddingGemma-300M model specialized for biblical text search and retrieval. This version is optimized for web deployment using transformers.js.
Model Performance
- Accuracy@1: 12.00% (13x improvement over base model)
- Accuracy@3: 15.00%
- Accuracy@10: 31.00%
- Training Steps: 25 (optimal stopping point)
- Base Model Accuracy@1: 0.91%
Usage with Transformers.js
import { AutoTokenizer, AutoModel } from '@huggingface/transformers';
// Load the model
const model = await AutoModel.from_pretrained('dpshade22/embeddinggemma-scripture-v1-onnx');
const tokenizer = await AutoTokenizer.from_pretrained('dpshade22/embeddinggemma-scripture-v1-onnx');
// Encode queries (use search_query: prefix)
const query = "search_query: What is love?";
const query_embedding = await model.encode([query]);
// Encode documents (use search_document: prefix)
const document = "search_document: Love is patient and kind";
const doc_embedding = await model.encode([document]);
Prefixes
For optimal performance, use these prefixes:
- Queries:
"search_query: your question here"
- Documents:
"search_document: scripture text here"
Model Details
- Base Model:
google/embeddinggemma-300m
- Training Data: 26,276 biblical text pairs
- Training Steps: 25 steps (optimal stopping point)
- Learning Rate: 2.0e-04
- Batch Size: 8
- Output Dimensions: 768D (supports Matryoshka 384D, 128D)
- ONNX Conversion: Using nixiesearch/onnx-convert specialized tool
Training Details
- Training Data: 26,276 biblical text pairs
- Learning Rate: 2.0e-04
- Batch Size: 8
- Training Strategy: Early stopping at 25 steps to prevent overfitting
- Output Dimensions: 768D (supports Matryoshka 384D, 128D)
Intended Use
This model is designed for:
- Biblical text search and retrieval in web applications
- Finding relevant scripture passages
- Semantic similarity of religious texts
- Question answering on biblical topics
- Offline PWA applications using transformers.js
Conversion Details
- Converted using: nixiesearch/onnx-convert specialized tool
- ONNX Opset: 17
- Optimization Level: 1
- Max difference from original: 1.9e-05 (within acceptable tolerance)
Related Models
- Original PyTorch version: dpshade22/embeddinggemma-scripture-v1
- Base model: google/embeddinggemma-300m
- Reference ONNX: onnx-community/embeddinggemma-300m-ONNX
- Downloads last month
- 6