whisper-small-jp

This model is a fine-tuned version of openai/whisper-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6168
  • Wer: 0.2600
  • Cer: 0.2600

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.6589 1.0 7154 0.6615 0.2735 0.2735
0.6273 2.0 14308 0.6457 0.2699 0.2699
0.6251 3.0 21462 0.6359 0.2660 0.2660
0.6427 4.0 28616 0.6283 0.2642 0.2642
0.6389 5.0 35770 0.6243 0.2631 0.2631
0.6078 6.0 42924 0.6242 0.2615 0.2615
0.5788 7.0 50078 0.6195 0.2603 0.2603
0.5801 8.0 57232 0.6180 0.2596 0.2596
0.5866 9.0 64386 0.6145 0.2598 0.2598
0.6052 10.0 71540 0.6168 0.2600 0.2600

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
6
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for drepic/whisper-small-jp

Finetuned
(2894)
this model