SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.3919

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("faodl/20250908_model_g20_multilabel_MiniLM-L12-all-labels")
# Run inference
preds = model("4.3.3 Strategies for Comprehensive Sexuality Education and (CSE) Youth-friendly Health Services 1. To promote volunteerism as a tool for fostering active participation of young people in national development; 5. To promote volunteerism as a tool for fostering active participation of young people in national development; 5.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 70.5122 1194

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 10
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0005 1 0.1435 -
0.0241 50 0.1438 -
0.0482 100 0.1239 -
0.0723 150 0.1073 -
0.0964 200 0.0992 -
0.1205 250 0.0883 -
0.1446 300 0.08 -
0.1687 350 0.0801 -
0.1928 400 0.073 -
0.2169 450 0.0647 -
0.2410 500 0.0549 -
0.2651 550 0.0575 -
0.2892 600 0.0544 -
0.3133 650 0.0523 -
0.3373 700 0.0506 -
0.3614 750 0.0467 -
0.3855 800 0.0443 -
0.4096 850 0.0385 -
0.4337 900 0.0425 -
0.4578 950 0.0412 -
0.4819 1000 0.036 -
0.5060 1050 0.0323 -
0.5301 1100 0.0352 -
0.5542 1150 0.0347 -
0.5783 1200 0.0319 -
0.6024 1250 0.0254 -
0.6265 1300 0.0291 -
0.6506 1350 0.0253 -
0.6747 1400 0.0283 -
0.6988 1450 0.0248 -
0.7229 1500 0.02 -
0.7470 1550 0.0249 -
0.7711 1600 0.0208 -
0.7952 1650 0.021 -
0.8193 1700 0.0238 -
0.8434 1750 0.0196 -
0.8675 1800 0.0213 -
0.8916 1850 0.0222 -
0.9157 1900 0.019 -
0.9398 1950 0.0226 -
0.9639 2000 0.0156 -
0.9880 2050 0.0193 -
1.0120 2100 0.016 -
1.0361 2150 0.019 -
1.0602 2200 0.0154 -
1.0843 2250 0.0136 -
1.1084 2300 0.014 -
1.1325 2350 0.0147 -
1.1566 2400 0.0126 -
1.1807 2450 0.0161 -
1.2048 2500 0.0123 -
1.2289 2550 0.0151 -
1.2530 2600 0.0123 -
1.2771 2650 0.0122 -
1.3012 2700 0.0084 -
1.3253 2750 0.0154 -
1.3494 2800 0.014 -
1.3735 2850 0.0124 -
1.3976 2900 0.0146 -
1.4217 2950 0.0103 -
1.4458 3000 0.0116 -
1.4699 3050 0.013 -
1.4940 3100 0.0104 -
1.5181 3150 0.0124 -
1.5422 3200 0.0127 -
1.5663 3250 0.0122 -
1.5904 3300 0.0092 -
1.6145 3350 0.0108 -
1.6386 3400 0.0121 -
1.6627 3450 0.0125 -
1.6867 3500 0.0162 -
1.7108 3550 0.0105 -
1.7349 3600 0.0133 -
1.7590 3650 0.0145 -
1.7831 3700 0.0113 -
1.8072 3750 0.009 -
1.8313 3800 0.0105 -
1.8554 3850 0.011 -
1.8795 3900 0.0087 -
1.9036 3950 0.0159 -
1.9277 4000 0.0101 -
1.9518 4050 0.0112 -
1.9759 4100 0.0111 -
2.0 4150 0.0124 -

Framework Versions

  • Python: 3.12.11
  • SetFit: 1.1.3
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.0
  • PyTorch: 2.8.0+cu126
  • Datasets: 4.0.0
  • Tokenizers: 0.22.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
21
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for faodl/20250908_model_g20_multilabel_MiniLM-L12-all-labels

Evaluation results