Push model using huggingface_hub.
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +10 -0
- README.md +295 -0
- config.json +25 -0
- config_sentence_transformers.json +14 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +65 -0
- unigram.json +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
unigram.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: 4.3.3 Strategies for Comprehensive Sexuality Education and (CSE) Youth-friendly
|
9 |
+
Health Services 1. To promote volunteerism as a tool for fostering active participation
|
10 |
+
of young people in national development; 5. To promote volunteerism as a tool
|
11 |
+
for fostering active participation of young people in national development; 5.
|
12 |
+
- text: 4) Mainstream appropriate food and nutrition issues in relevant sector policies
|
13 |
+
and strategies. 4) Mainstream appropriate food and nutrition issues in relevant
|
14 |
+
sector policies and strategies. ), these and many others have varying requirements
|
15 |
+
related to 3.5 Communication Support for Food and Nutrition Programmes and Interventions
|
16 |
+
National Food and Nutrition Strategic Plan 2011-2015 11 generation of demand by
|
17 |
+
the population.
|
18 |
+
- text: incidence of stunting reduced from 39 to 35 percent, and population with calories
|
19 |
+
deficit from 35 to 31 percent) and public food distribution ( i.e from 20 thousand
|
20 |
+
MT to 39 thousand MT and food sales by 29 thousand MT). It states that “the main
|
21 |
+
objective of the food security plan is to make the life of the targeted people
|
22 |
+
healthy and productive by improving national food sovereignty and the food and
|
23 |
+
nutrition situation.” Accordingly, the TYIP set out and scaled up the quantities
|
24 |
+
targets in terms of per capita food production (i.e., from 280–289 kg per capita
|
25 |
+
annually), indicators of nutrition ( i.e. Food procurement policy should be made
|
26 |
+
as a vehicle of ensuring sufficient supply of essential food items and also a
|
27 |
+
means of containing prices.
|
28 |
+
- text: 'UP-5978 “On additional measures to support the public, economic3 April 2020:
|
29 |
+
Presidential Decree No. Tax benefitsTax benefits The Decree 5969, the Decree 5978,
|
30 |
+
and the Decree 5986 (together the “Decrees”) have introduced the followingThe
|
31 |
+
Decree 5969, the Decree 5978, and the Decree 5986 (together the “Decrees”) have
|
32 |
+
introduced the following tax reductions (benefits) for businesses:tax reductions
|
33 |
+
(benefits) for businesses: for the period from 1 April 2020 to 1 October 2020:for
|
34 |
+
the period from 1 April 2020 to 1 October 2020: 02/06/2020 COVID-19: Uzbekistan
|
35 |
+
Government Financial Assistance Measures - Lexology https://www.lexology.com/library/detail.aspx?g=1d5e31b2-e7b1-44c9-8c9e-7d4bc5975bc2
|
36 |
+
3/5 the minimum amount of social tax for individual entrepreneurs is reduced to
|
37 |
+
the minimum amount of social tax for individual entrepreneurs is reduced to 50%50%
|
38 |
+
of the base of the base calculated amount (“BCA”) per month;calculated amount
|
39 |
+
(“BCA”) per month; the amount of mandatory payments for wholesalers of alcoholic
|
40 |
+
beverages is reduced from the amount of mandatory payments for wholesalers of
|
41 |
+
alcoholic beverages is reduced from 5 to5 to 3%3%; and; and fees for the right
|
42 |
+
to retail sale of alcoholic products by catering enterprises are reduced byfees
|
43 |
+
for the right to retail sale of alcoholic products by catering enterprises are
|
44 |
+
reduced by 25% 25% of of the amounts set under law.the amounts set under law.
|
45 |
+
These measures provide certain guarantees and protections, including deferred
|
46 |
+
tax payments, decrease of taxThese measures provide certain guarantees and protections,
|
47 |
+
including deferred tax payments, decrease of tax rates, tax related waivers and
|
48 |
+
exemptions, as well as liquidity support measures.rates, tax related waivers and
|
49 |
+
exemptions, as well as liquidity support measures.'
|
50 |
+
- text: 'The composition and nutritional content of the food ration for each beneficiary
|
51 |
+
group are as follows: 19 While only the poorest families in the most food-insecure
|
52 |
+
districts will receive general food distributions, in the poorest districts supplementary
|
53 |
+
feeding will be targeted to all children 6-24 months, pregnant/lactating women
|
54 |
+
and all moderately- malnourished children. 10767.0 Results-Chain (Logic Model)
|
55 |
+
Performance Indicators Risks, Assumptions STRATEGIC OBJECTIVE 1 - Save Lives and
|
56 |
+
Protect Livelihoods in Emergencies Outcome 1.1: Reduced acute malnutrition in
|
57 |
+
children under 5 in targeted emergency-affected populations Outcome 1.3: Improved
|
58 |
+
food consumption over assistance period for targeted crisis-affected beneficiaries.
|
59 |
+
(b) The food and nutrition situation 9.'
|
60 |
+
metrics:
|
61 |
+
- accuracy
|
62 |
+
pipeline_tag: text-classification
|
63 |
+
library_name: setfit
|
64 |
+
inference: false
|
65 |
+
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
66 |
+
---
|
67 |
+
|
68 |
+
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
69 |
+
|
70 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
|
71 |
+
|
72 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
73 |
+
|
74 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
75 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
76 |
+
|
77 |
+
## Model Details
|
78 |
+
|
79 |
+
### Model Description
|
80 |
+
- **Model Type:** SetFit
|
81 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
|
82 |
+
- **Classification head:** a OneVsRestClassifier instance
|
83 |
+
- **Maximum Sequence Length:** 128 tokens
|
84 |
+
<!-- - **Number of Classes:** Unknown -->
|
85 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
86 |
+
<!-- - **Language:** Unknown -->
|
87 |
+
<!-- - **License:** Unknown -->
|
88 |
+
|
89 |
+
### Model Sources
|
90 |
+
|
91 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
92 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
93 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
94 |
+
|
95 |
+
## Uses
|
96 |
+
|
97 |
+
### Direct Use for Inference
|
98 |
+
|
99 |
+
First install the SetFit library:
|
100 |
+
|
101 |
+
```bash
|
102 |
+
pip install setfit
|
103 |
+
```
|
104 |
+
|
105 |
+
Then you can load this model and run inference.
|
106 |
+
|
107 |
+
```python
|
108 |
+
from setfit import SetFitModel
|
109 |
+
|
110 |
+
# Download from the 🤗 Hub
|
111 |
+
model = SetFitModel.from_pretrained("faodl/20250908_model_g20_multilabel_MiniLM-L12-all-labels")
|
112 |
+
# Run inference
|
113 |
+
preds = model("4.3.3 Strategies for Comprehensive Sexuality Education and (CSE) Youth-friendly Health Services 1. To promote volunteerism as a tool for fostering active participation of young people in national development; 5. To promote volunteerism as a tool for fostering active participation of young people in national development; 5.")
|
114 |
+
```
|
115 |
+
|
116 |
+
<!--
|
117 |
+
### Downstream Use
|
118 |
+
|
119 |
+
*List how someone could finetune this model on their own dataset.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Out-of-Scope Use
|
124 |
+
|
125 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
<!--
|
129 |
+
## Bias, Risks and Limitations
|
130 |
+
|
131 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
### Recommendations
|
136 |
+
|
137 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
## Training Details
|
141 |
+
|
142 |
+
### Training Set Metrics
|
143 |
+
| Training set | Min | Median | Max |
|
144 |
+
|:-------------|:----|:--------|:-----|
|
145 |
+
| Word count | 2 | 70.5122 | 1194 |
|
146 |
+
|
147 |
+
### Training Hyperparameters
|
148 |
+
- batch_size: (32, 32)
|
149 |
+
- num_epochs: (2, 2)
|
150 |
+
- max_steps: -1
|
151 |
+
- sampling_strategy: oversampling
|
152 |
+
- num_iterations: 10
|
153 |
+
- body_learning_rate: (2e-05, 2e-05)
|
154 |
+
- head_learning_rate: 2e-05
|
155 |
+
- loss: CosineSimilarityLoss
|
156 |
+
- distance_metric: cosine_distance
|
157 |
+
- margin: 0.25
|
158 |
+
- end_to_end: False
|
159 |
+
- use_amp: False
|
160 |
+
- warmup_proportion: 0.1
|
161 |
+
- l2_weight: 0.01
|
162 |
+
- seed: 42
|
163 |
+
- eval_max_steps: -1
|
164 |
+
- load_best_model_at_end: False
|
165 |
+
|
166 |
+
### Training Results
|
167 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
168 |
+
|:------:|:----:|:-------------:|:---------------:|
|
169 |
+
| 0.0005 | 1 | 0.1435 | - |
|
170 |
+
| 0.0241 | 50 | 0.1438 | - |
|
171 |
+
| 0.0482 | 100 | 0.1239 | - |
|
172 |
+
| 0.0723 | 150 | 0.1073 | - |
|
173 |
+
| 0.0964 | 200 | 0.0992 | - |
|
174 |
+
| 0.1205 | 250 | 0.0883 | - |
|
175 |
+
| 0.1446 | 300 | 0.08 | - |
|
176 |
+
| 0.1687 | 350 | 0.0801 | - |
|
177 |
+
| 0.1928 | 400 | 0.073 | - |
|
178 |
+
| 0.2169 | 450 | 0.0647 | - |
|
179 |
+
| 0.2410 | 500 | 0.0549 | - |
|
180 |
+
| 0.2651 | 550 | 0.0575 | - |
|
181 |
+
| 0.2892 | 600 | 0.0544 | - |
|
182 |
+
| 0.3133 | 650 | 0.0523 | - |
|
183 |
+
| 0.3373 | 700 | 0.0506 | - |
|
184 |
+
| 0.3614 | 750 | 0.0467 | - |
|
185 |
+
| 0.3855 | 800 | 0.0443 | - |
|
186 |
+
| 0.4096 | 850 | 0.0385 | - |
|
187 |
+
| 0.4337 | 900 | 0.0425 | - |
|
188 |
+
| 0.4578 | 950 | 0.0412 | - |
|
189 |
+
| 0.4819 | 1000 | 0.036 | - |
|
190 |
+
| 0.5060 | 1050 | 0.0323 | - |
|
191 |
+
| 0.5301 | 1100 | 0.0352 | - |
|
192 |
+
| 0.5542 | 1150 | 0.0347 | - |
|
193 |
+
| 0.5783 | 1200 | 0.0319 | - |
|
194 |
+
| 0.6024 | 1250 | 0.0254 | - |
|
195 |
+
| 0.6265 | 1300 | 0.0291 | - |
|
196 |
+
| 0.6506 | 1350 | 0.0253 | - |
|
197 |
+
| 0.6747 | 1400 | 0.0283 | - |
|
198 |
+
| 0.6988 | 1450 | 0.0248 | - |
|
199 |
+
| 0.7229 | 1500 | 0.02 | - |
|
200 |
+
| 0.7470 | 1550 | 0.0249 | - |
|
201 |
+
| 0.7711 | 1600 | 0.0208 | - |
|
202 |
+
| 0.7952 | 1650 | 0.021 | - |
|
203 |
+
| 0.8193 | 1700 | 0.0238 | - |
|
204 |
+
| 0.8434 | 1750 | 0.0196 | - |
|
205 |
+
| 0.8675 | 1800 | 0.0213 | - |
|
206 |
+
| 0.8916 | 1850 | 0.0222 | - |
|
207 |
+
| 0.9157 | 1900 | 0.019 | - |
|
208 |
+
| 0.9398 | 1950 | 0.0226 | - |
|
209 |
+
| 0.9639 | 2000 | 0.0156 | - |
|
210 |
+
| 0.9880 | 2050 | 0.0193 | - |
|
211 |
+
| 1.0120 | 2100 | 0.016 | - |
|
212 |
+
| 1.0361 | 2150 | 0.019 | - |
|
213 |
+
| 1.0602 | 2200 | 0.0154 | - |
|
214 |
+
| 1.0843 | 2250 | 0.0136 | - |
|
215 |
+
| 1.1084 | 2300 | 0.014 | - |
|
216 |
+
| 1.1325 | 2350 | 0.0147 | - |
|
217 |
+
| 1.1566 | 2400 | 0.0126 | - |
|
218 |
+
| 1.1807 | 2450 | 0.0161 | - |
|
219 |
+
| 1.2048 | 2500 | 0.0123 | - |
|
220 |
+
| 1.2289 | 2550 | 0.0151 | - |
|
221 |
+
| 1.2530 | 2600 | 0.0123 | - |
|
222 |
+
| 1.2771 | 2650 | 0.0122 | - |
|
223 |
+
| 1.3012 | 2700 | 0.0084 | - |
|
224 |
+
| 1.3253 | 2750 | 0.0154 | - |
|
225 |
+
| 1.3494 | 2800 | 0.014 | - |
|
226 |
+
| 1.3735 | 2850 | 0.0124 | - |
|
227 |
+
| 1.3976 | 2900 | 0.0146 | - |
|
228 |
+
| 1.4217 | 2950 | 0.0103 | - |
|
229 |
+
| 1.4458 | 3000 | 0.0116 | - |
|
230 |
+
| 1.4699 | 3050 | 0.013 | - |
|
231 |
+
| 1.4940 | 3100 | 0.0104 | - |
|
232 |
+
| 1.5181 | 3150 | 0.0124 | - |
|
233 |
+
| 1.5422 | 3200 | 0.0127 | - |
|
234 |
+
| 1.5663 | 3250 | 0.0122 | - |
|
235 |
+
| 1.5904 | 3300 | 0.0092 | - |
|
236 |
+
| 1.6145 | 3350 | 0.0108 | - |
|
237 |
+
| 1.6386 | 3400 | 0.0121 | - |
|
238 |
+
| 1.6627 | 3450 | 0.0125 | - |
|
239 |
+
| 1.6867 | 3500 | 0.0162 | - |
|
240 |
+
| 1.7108 | 3550 | 0.0105 | - |
|
241 |
+
| 1.7349 | 3600 | 0.0133 | - |
|
242 |
+
| 1.7590 | 3650 | 0.0145 | - |
|
243 |
+
| 1.7831 | 3700 | 0.0113 | - |
|
244 |
+
| 1.8072 | 3750 | 0.009 | - |
|
245 |
+
| 1.8313 | 3800 | 0.0105 | - |
|
246 |
+
| 1.8554 | 3850 | 0.011 | - |
|
247 |
+
| 1.8795 | 3900 | 0.0087 | - |
|
248 |
+
| 1.9036 | 3950 | 0.0159 | - |
|
249 |
+
| 1.9277 | 4000 | 0.0101 | - |
|
250 |
+
| 1.9518 | 4050 | 0.0112 | - |
|
251 |
+
| 1.9759 | 4100 | 0.0111 | - |
|
252 |
+
| 2.0 | 4150 | 0.0124 | - |
|
253 |
+
|
254 |
+
### Framework Versions
|
255 |
+
- Python: 3.12.11
|
256 |
+
- SetFit: 1.1.3
|
257 |
+
- Sentence Transformers: 5.1.0
|
258 |
+
- Transformers: 4.56.0
|
259 |
+
- PyTorch: 2.8.0+cu126
|
260 |
+
- Datasets: 4.0.0
|
261 |
+
- Tokenizers: 0.22.0
|
262 |
+
|
263 |
+
## Citation
|
264 |
+
|
265 |
+
### BibTeX
|
266 |
+
```bibtex
|
267 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
268 |
+
doi = {10.48550/ARXIV.2209.11055},
|
269 |
+
url = {https://arxiv.org/abs/2209.11055},
|
270 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
271 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
272 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
273 |
+
publisher = {arXiv},
|
274 |
+
year = {2022},
|
275 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
276 |
+
}
|
277 |
+
```
|
278 |
+
|
279 |
+
<!--
|
280 |
+
## Glossary
|
281 |
+
|
282 |
+
*Clearly define terms in order to be accessible across audiences.*
|
283 |
+
-->
|
284 |
+
|
285 |
+
<!--
|
286 |
+
## Model Card Authors
|
287 |
+
|
288 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
289 |
+
-->
|
290 |
+
|
291 |
+
<!--
|
292 |
+
## Model Card Contact
|
293 |
+
|
294 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
295 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"dtype": "float32",
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.56.0",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 250037
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "5.1.0",
|
4 |
+
"transformers": "4.56.0",
|
5 |
+
"pytorch": "2.8.0+cu126"
|
6 |
+
},
|
7 |
+
"model_type": "SentenceTransformer",
|
8 |
+
"prompts": {
|
9 |
+
"query": "",
|
10 |
+
"document": ""
|
11 |
+
},
|
12 |
+
"default_prompt_name": null,
|
13 |
+
"similarity_fn_name": "cosine"
|
14 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7eaac5df35717f3af837f9b039b2d6e267dc626d6ae98195b0b489e08ebd9154
|
3 |
+
size 470637416
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fea6761176fed32fb1b44b2d6c6c126f0ba46c31ad889e49945ddb2d7ec53a0
|
3 |
+
size 174820
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_lower_case": true,
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"extra_special_tokens": {},
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"max_length": 128,
|
52 |
+
"model_max_length": 128,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "<pad>",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "</s>",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "<unk>"
|
65 |
+
}
|
unigram.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
|
3 |
+
size 14763260
|