lgsilvaesilva commited on
Commit
a2ef4e0
·
verified ·
1 Parent(s): d0143c1

Push model using huggingface_hub.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 4.3.3 Strategies for Comprehensive Sexuality Education and (CSE) Youth-friendly
9
+ Health Services 1. To promote volunteerism as a tool for fostering active participation
10
+ of young people in national development; 5. To promote volunteerism as a tool
11
+ for fostering active participation of young people in national development; 5.
12
+ - text: 4) Mainstream appropriate food and nutrition issues in relevant sector policies
13
+ and strategies. 4) Mainstream appropriate food and nutrition issues in relevant
14
+ sector policies and strategies. ), these and many others have varying requirements
15
+ related to 3.5 Communication Support for Food and Nutrition Programmes and Interventions
16
+ National Food and Nutrition Strategic Plan 2011-2015 11 generation of demand by
17
+ the population.
18
+ - text: incidence of stunting reduced from 39 to 35 percent, and population with calories
19
+ deficit from 35 to 31 percent) and public food distribution ( i.e from 20 thousand
20
+ MT to 39 thousand MT and food sales by 29 thousand MT). It states that “the main
21
+ objective of the food security plan is to make the life of the targeted people
22
+ healthy and productive by improving national food sovereignty and the food and
23
+ nutrition situation.” Accordingly, the TYIP set out and scaled up the quantities
24
+ targets in terms of per capita food production (i.e., from 280–289 kg per capita
25
+ annually), indicators of nutrition ( i.e. Food procurement policy should be made
26
+ as a vehicle of ensuring sufficient supply of essential food items and also a
27
+ means of containing prices.
28
+ - text: 'UP-5978 “On additional measures to support the public, economic3 April 2020:
29
+ Presidential Decree No. Tax benefitsTax benefits The Decree 5969, the Decree 5978,
30
+ and the Decree 5986 (together the “Decrees”) have introduced the followingThe
31
+ Decree 5969, the Decree 5978, and the Decree 5986 (together the “Decrees”) have
32
+ introduced the following tax reductions (benefits) for businesses:tax reductions
33
+ (benefits) for businesses: for the period from 1 April 2020 to 1 October 2020:for
34
+ the period from 1 April 2020 to 1 October 2020: 02/06/2020 COVID-19: Uzbekistan
35
+ Government Financial Assistance Measures - Lexology https://www.lexology.com/library/detail.aspx?g=1d5e31b2-e7b1-44c9-8c9e-7d4bc5975bc2
36
+ 3/5 the minimum amount of social tax for individual entrepreneurs is reduced to
37
+ the minimum amount of social tax for individual entrepreneurs is reduced to 50%50%
38
+ of the base of the base calculated amount (“BCA”) per month;calculated amount
39
+ (“BCA”) per month; the amount of mandatory payments for wholesalers of alcoholic
40
+ beverages is reduced from the amount of mandatory payments for wholesalers of
41
+ alcoholic beverages is reduced from 5 to5 to 3%3%; and; and fees for the right
42
+ to retail sale of alcoholic products by catering enterprises are reduced byfees
43
+ for the right to retail sale of alcoholic products by catering enterprises are
44
+ reduced by 25% 25% of of the amounts set under law.the amounts set under law.
45
+ These measures provide certain guarantees and protections, including deferred
46
+ tax payments, decrease of taxThese measures provide certain guarantees and protections,
47
+ including deferred tax payments, decrease of tax rates, tax related waivers and
48
+ exemptions, as well as liquidity support measures.rates, tax related waivers and
49
+ exemptions, as well as liquidity support measures.'
50
+ - text: 'The composition and nutritional content of the food ration for each beneficiary
51
+ group are as follows: 19 While only the poorest families in the most food-insecure
52
+ districts will receive general food distributions, in the poorest districts supplementary
53
+ feeding will be targeted to all children 6-24 months, pregnant/lactating women
54
+ and all moderately- malnourished children. 10767.0 Results-Chain (Logic Model)
55
+ Performance Indicators Risks, Assumptions STRATEGIC OBJECTIVE 1 - Save Lives and
56
+ Protect Livelihoods in Emergencies Outcome 1.1: Reduced acute malnutrition in
57
+ children under 5 in targeted emergency-affected populations Outcome 1.3: Improved
58
+ food consumption over assistance period for targeted crisis-affected beneficiaries.
59
+ (b) The food and nutrition situation 9.'
60
+ metrics:
61
+ - accuracy
62
+ pipeline_tag: text-classification
63
+ library_name: setfit
64
+ inference: false
65
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
66
+ ---
67
+
68
+ # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
69
+
70
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
71
+
72
+ The model has been trained using an efficient few-shot learning technique that involves:
73
+
74
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
75
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
76
+
77
+ ## Model Details
78
+
79
+ ### Model Description
80
+ - **Model Type:** SetFit
81
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
82
+ - **Classification head:** a OneVsRestClassifier instance
83
+ - **Maximum Sequence Length:** 128 tokens
84
+ <!-- - **Number of Classes:** Unknown -->
85
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
86
+ <!-- - **Language:** Unknown -->
87
+ <!-- - **License:** Unknown -->
88
+
89
+ ### Model Sources
90
+
91
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
92
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
93
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
94
+
95
+ ## Uses
96
+
97
+ ### Direct Use for Inference
98
+
99
+ First install the SetFit library:
100
+
101
+ ```bash
102
+ pip install setfit
103
+ ```
104
+
105
+ Then you can load this model and run inference.
106
+
107
+ ```python
108
+ from setfit import SetFitModel
109
+
110
+ # Download from the 🤗 Hub
111
+ model = SetFitModel.from_pretrained("faodl/20250908_model_g20_multilabel_MiniLM-L12-all-labels")
112
+ # Run inference
113
+ preds = model("4.3.3 Strategies for Comprehensive Sexuality Education and (CSE) Youth-friendly Health Services 1. To promote volunteerism as a tool for fostering active participation of young people in national development; 5. To promote volunteerism as a tool for fostering active participation of young people in national development; 5.")
114
+ ```
115
+
116
+ <!--
117
+ ### Downstream Use
118
+
119
+ *List how someone could finetune this model on their own dataset.*
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Set Metrics
143
+ | Training set | Min | Median | Max |
144
+ |:-------------|:----|:--------|:-----|
145
+ | Word count | 2 | 70.5122 | 1194 |
146
+
147
+ ### Training Hyperparameters
148
+ - batch_size: (32, 32)
149
+ - num_epochs: (2, 2)
150
+ - max_steps: -1
151
+ - sampling_strategy: oversampling
152
+ - num_iterations: 10
153
+ - body_learning_rate: (2e-05, 2e-05)
154
+ - head_learning_rate: 2e-05
155
+ - loss: CosineSimilarityLoss
156
+ - distance_metric: cosine_distance
157
+ - margin: 0.25
158
+ - end_to_end: False
159
+ - use_amp: False
160
+ - warmup_proportion: 0.1
161
+ - l2_weight: 0.01
162
+ - seed: 42
163
+ - eval_max_steps: -1
164
+ - load_best_model_at_end: False
165
+
166
+ ### Training Results
167
+ | Epoch | Step | Training Loss | Validation Loss |
168
+ |:------:|:----:|:-------------:|:---------------:|
169
+ | 0.0005 | 1 | 0.1435 | - |
170
+ | 0.0241 | 50 | 0.1438 | - |
171
+ | 0.0482 | 100 | 0.1239 | - |
172
+ | 0.0723 | 150 | 0.1073 | - |
173
+ | 0.0964 | 200 | 0.0992 | - |
174
+ | 0.1205 | 250 | 0.0883 | - |
175
+ | 0.1446 | 300 | 0.08 | - |
176
+ | 0.1687 | 350 | 0.0801 | - |
177
+ | 0.1928 | 400 | 0.073 | - |
178
+ | 0.2169 | 450 | 0.0647 | - |
179
+ | 0.2410 | 500 | 0.0549 | - |
180
+ | 0.2651 | 550 | 0.0575 | - |
181
+ | 0.2892 | 600 | 0.0544 | - |
182
+ | 0.3133 | 650 | 0.0523 | - |
183
+ | 0.3373 | 700 | 0.0506 | - |
184
+ | 0.3614 | 750 | 0.0467 | - |
185
+ | 0.3855 | 800 | 0.0443 | - |
186
+ | 0.4096 | 850 | 0.0385 | - |
187
+ | 0.4337 | 900 | 0.0425 | - |
188
+ | 0.4578 | 950 | 0.0412 | - |
189
+ | 0.4819 | 1000 | 0.036 | - |
190
+ | 0.5060 | 1050 | 0.0323 | - |
191
+ | 0.5301 | 1100 | 0.0352 | - |
192
+ | 0.5542 | 1150 | 0.0347 | - |
193
+ | 0.5783 | 1200 | 0.0319 | - |
194
+ | 0.6024 | 1250 | 0.0254 | - |
195
+ | 0.6265 | 1300 | 0.0291 | - |
196
+ | 0.6506 | 1350 | 0.0253 | - |
197
+ | 0.6747 | 1400 | 0.0283 | - |
198
+ | 0.6988 | 1450 | 0.0248 | - |
199
+ | 0.7229 | 1500 | 0.02 | - |
200
+ | 0.7470 | 1550 | 0.0249 | - |
201
+ | 0.7711 | 1600 | 0.0208 | - |
202
+ | 0.7952 | 1650 | 0.021 | - |
203
+ | 0.8193 | 1700 | 0.0238 | - |
204
+ | 0.8434 | 1750 | 0.0196 | - |
205
+ | 0.8675 | 1800 | 0.0213 | - |
206
+ | 0.8916 | 1850 | 0.0222 | - |
207
+ | 0.9157 | 1900 | 0.019 | - |
208
+ | 0.9398 | 1950 | 0.0226 | - |
209
+ | 0.9639 | 2000 | 0.0156 | - |
210
+ | 0.9880 | 2050 | 0.0193 | - |
211
+ | 1.0120 | 2100 | 0.016 | - |
212
+ | 1.0361 | 2150 | 0.019 | - |
213
+ | 1.0602 | 2200 | 0.0154 | - |
214
+ | 1.0843 | 2250 | 0.0136 | - |
215
+ | 1.1084 | 2300 | 0.014 | - |
216
+ | 1.1325 | 2350 | 0.0147 | - |
217
+ | 1.1566 | 2400 | 0.0126 | - |
218
+ | 1.1807 | 2450 | 0.0161 | - |
219
+ | 1.2048 | 2500 | 0.0123 | - |
220
+ | 1.2289 | 2550 | 0.0151 | - |
221
+ | 1.2530 | 2600 | 0.0123 | - |
222
+ | 1.2771 | 2650 | 0.0122 | - |
223
+ | 1.3012 | 2700 | 0.0084 | - |
224
+ | 1.3253 | 2750 | 0.0154 | - |
225
+ | 1.3494 | 2800 | 0.014 | - |
226
+ | 1.3735 | 2850 | 0.0124 | - |
227
+ | 1.3976 | 2900 | 0.0146 | - |
228
+ | 1.4217 | 2950 | 0.0103 | - |
229
+ | 1.4458 | 3000 | 0.0116 | - |
230
+ | 1.4699 | 3050 | 0.013 | - |
231
+ | 1.4940 | 3100 | 0.0104 | - |
232
+ | 1.5181 | 3150 | 0.0124 | - |
233
+ | 1.5422 | 3200 | 0.0127 | - |
234
+ | 1.5663 | 3250 | 0.0122 | - |
235
+ | 1.5904 | 3300 | 0.0092 | - |
236
+ | 1.6145 | 3350 | 0.0108 | - |
237
+ | 1.6386 | 3400 | 0.0121 | - |
238
+ | 1.6627 | 3450 | 0.0125 | - |
239
+ | 1.6867 | 3500 | 0.0162 | - |
240
+ | 1.7108 | 3550 | 0.0105 | - |
241
+ | 1.7349 | 3600 | 0.0133 | - |
242
+ | 1.7590 | 3650 | 0.0145 | - |
243
+ | 1.7831 | 3700 | 0.0113 | - |
244
+ | 1.8072 | 3750 | 0.009 | - |
245
+ | 1.8313 | 3800 | 0.0105 | - |
246
+ | 1.8554 | 3850 | 0.011 | - |
247
+ | 1.8795 | 3900 | 0.0087 | - |
248
+ | 1.9036 | 3950 | 0.0159 | - |
249
+ | 1.9277 | 4000 | 0.0101 | - |
250
+ | 1.9518 | 4050 | 0.0112 | - |
251
+ | 1.9759 | 4100 | 0.0111 | - |
252
+ | 2.0 | 4150 | 0.0124 | - |
253
+
254
+ ### Framework Versions
255
+ - Python: 3.12.11
256
+ - SetFit: 1.1.3
257
+ - Sentence Transformers: 5.1.0
258
+ - Transformers: 4.56.0
259
+ - PyTorch: 2.8.0+cu126
260
+ - Datasets: 4.0.0
261
+ - Tokenizers: 0.22.0
262
+
263
+ ## Citation
264
+
265
+ ### BibTeX
266
+ ```bibtex
267
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
268
+ doi = {10.48550/ARXIV.2209.11055},
269
+ url = {https://arxiv.org/abs/2209.11055},
270
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
271
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
272
+ title = {Efficient Few-Shot Learning Without Prompts},
273
+ publisher = {arXiv},
274
+ year = {2022},
275
+ copyright = {Creative Commons Attribution 4.0 International}
276
+ }
277
+ ```
278
+
279
+ <!--
280
+ ## Glossary
281
+
282
+ *Clearly define terms in order to be accessible across audiences.*
283
+ -->
284
+
285
+ <!--
286
+ ## Model Card Authors
287
+
288
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
289
+ -->
290
+
291
+ <!--
292
+ ## Model Card Contact
293
+
294
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
295
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.56.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.0",
4
+ "transformers": "4.56.0",
5
+ "pytorch": "2.8.0+cu126"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eaac5df35717f3af837f9b039b2d6e267dc626d6ae98195b0b489e08ebd9154
3
+ size 470637416
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fea6761176fed32fb1b44b2d6c6c126f0ba46c31ad889e49945ddb2d7ec53a0
3
+ size 174820
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260