finalform's picture
Upload folder using huggingface_hub
00898ce verified
metadata
library_name: peft
license: other
base_model: ibm-granite/granite-3.3-8b-instruct
tags:
  - llama-factory
  - lora
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: factory_granite_results
    results: []

factory_granite_results

This model is a fine-tuned version of ibm-granite/granite-3.3-8b-instruct on the train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2523
  • Accuracy: 0.9475

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 9.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4051 1.0 32 0.4305 0.8978
0.2886 2.0 64 0.3232 0.9206
0.2289 3.0 96 0.2742 0.9323
0.1925 4.0 128 0.2514 0.9387
0.1079 5.0 160 0.2456 0.9420
0.0968 6.0 192 0.2410 0.9454
0.0835 7.0 224 0.2464 0.9466
0.0716 8.0 256 0.2516 0.9472
0.0611 9.0 288 0.2523 0.9475

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.4
  • Pytorch 2.7.0
  • Datasets 3.6.0
  • Tokenizers 0.21.1