overall_binary / README.md
harun27's picture
End of training
1284738 verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
  - generated_from_trainer
model-index:
  - name: overall_binary
    results: []

overall_binary

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5527
  • Classification Report: {'0': {'precision': 0.6428571428571429, 'recall': 0.8181818181818182, 'f1-score': 0.72, 'support': 22.0}, '1': {'precision': 0.8461538461538461, 'recall': 0.6875, 'f1-score': 0.7586206896551724, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7445054945054945, 'recall': 0.7528409090909092, 'f1-score': 0.7393103448275862, 'support': 54.0}, 'weighted avg': {'precision': 0.7633292633292633, 'recall': 0.7407407407407407, 'f1-score': 0.7428863346104725, 'support': 54.0}}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 96
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Classification Report
No log 1.0 2 0.6891 {'0': {'precision': 0.4375, 'recall': 0.6363636363636364, 'f1-score': 0.5185185185185185, 'support': 22.0}, '1': {'precision': 0.6363636363636364, 'recall': 0.4375, 'f1-score': 0.5185185185185185, 'support': 32.0}, 'accuracy': 0.5185185185185185, 'macro avg': {'precision': 0.5369318181818181, 'recall': 0.5369318181818181, 'f1-score': 0.5185185185185185, 'support': 54.0}, 'weighted avg': {'precision': 0.5553451178451179, 'recall': 0.5185185185185185, 'f1-score': 0.5185185185185185, 'support': 54.0}}
No log 2.0 4 0.6670 {'0': {'precision': 0.5555555555555556, 'recall': 0.22727272727272727, 'f1-score': 0.3225806451612903, 'support': 22.0}, '1': {'precision': 0.6222222222222222, 'recall': 0.875, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.6111111111111112, 'macro avg': {'precision': 0.5888888888888889, 'recall': 0.5511363636363636, 'f1-score': 0.5249266862170088, 'support': 54.0}, 'weighted avg': {'precision': 0.5950617283950618, 'recall': 0.6111111111111112, 'f1-score': 0.5623981753014011, 'support': 54.0}}
No log 3.0 6 0.6707 {'0': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 22.0}, '1': {'precision': 0.5925925925925926, 'recall': 1.0, 'f1-score': 0.7441860465116279, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.2962962962962963, 'recall': 0.5, 'f1-score': 0.37209302325581395, 'support': 54.0}, 'weighted avg': {'precision': 0.3511659807956104, 'recall': 0.5925925925925926, 'f1-score': 0.4409991386735573, 'support': 54.0}}
No log 4.0 8 0.6573 {'0': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 22.0}, '1': {'precision': 0.5925925925925926, 'recall': 1.0, 'f1-score': 0.7441860465116279, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.2962962962962963, 'recall': 0.5, 'f1-score': 0.37209302325581395, 'support': 54.0}, 'weighted avg': {'precision': 0.3511659807956104, 'recall': 0.5925925925925926, 'f1-score': 0.4409991386735573, 'support': 54.0}}
No log 5.0 10 0.6460 {'0': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 22.0}, '1': {'precision': 0.5925925925925926, 'recall': 1.0, 'f1-score': 0.7441860465116279, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.2962962962962963, 'recall': 0.5, 'f1-score': 0.37209302325581395, 'support': 54.0}, 'weighted avg': {'precision': 0.3511659807956104, 'recall': 0.5925925925925926, 'f1-score': 0.4409991386735573, 'support': 54.0}}
No log 6.0 12 0.6352 {'0': {'precision': 0.5, 'recall': 0.13636363636363635, 'f1-score': 0.21428571428571427, 'support': 22.0}, '1': {'precision': 0.6041666666666666, 'recall': 0.90625, 'f1-score': 0.725, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.5520833333333333, 'recall': 0.5213068181818181, 'f1-score': 0.46964285714285714, 'support': 54.0}, 'weighted avg': {'precision': 0.5617283950617283, 'recall': 0.5925925925925926, 'f1-score': 0.5169312169312169, 'support': 54.0}}
No log 7.0 14 0.6288 {'0': {'precision': 0.625, 'recall': 0.22727272727272727, 'f1-score': 0.3333333333333333, 'support': 22.0}, '1': {'precision': 0.6304347826086957, 'recall': 0.90625, 'f1-score': 0.7435897435897436, 'support': 32.0}, 'accuracy': 0.6296296296296297, 'macro avg': {'precision': 0.6277173913043479, 'recall': 0.5667613636363636, 'f1-score': 0.5384615384615384, 'support': 54.0}, 'weighted avg': {'precision': 0.6282206119162642, 'recall': 0.6296296296296297, 'f1-score': 0.5764482431149097, 'support': 54.0}}
No log 8.0 16 0.6234 {'0': {'precision': 0.6666666666666666, 'recall': 0.45454545454545453, 'f1-score': 0.5405405405405406, 'support': 22.0}, '1': {'precision': 0.6923076923076923, 'recall': 0.84375, 'f1-score': 0.7605633802816901, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6794871794871795, 'recall': 0.6491477272727273, 'f1-score': 0.6505519604111154, 'support': 54.0}, 'weighted avg': {'precision': 0.6818613485280152, 'recall': 0.6851851851851852, 'f1-score': 0.6709244455723329, 'support': 54.0}}
No log 9.0 18 0.6166 {'0': {'precision': 0.6470588235294118, 'recall': 0.5, 'f1-score': 0.5641025641025641, 'support': 22.0}, '1': {'precision': 0.7027027027027027, 'recall': 0.8125, 'f1-score': 0.7536231884057971, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6748807631160573, 'recall': 0.65625, 'f1-score': 0.6588628762541806, 'support': 54.0}, 'weighted avg': {'precision': 0.6800329741506212, 'recall': 0.6851851851851852, 'f1-score': 0.6764110822081837, 'support': 54.0}}
No log 10.0 20 0.6029 {'0': {'precision': 0.6666666666666666, 'recall': 0.45454545454545453, 'f1-score': 0.5405405405405406, 'support': 22.0}, '1': {'precision': 0.6923076923076923, 'recall': 0.84375, 'f1-score': 0.7605633802816901, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6794871794871795, 'recall': 0.6491477272727273, 'f1-score': 0.6505519604111154, 'support': 54.0}, 'weighted avg': {'precision': 0.6818613485280152, 'recall': 0.6851851851851852, 'f1-score': 0.6709244455723329, 'support': 54.0}}
No log 11.0 22 0.5977 {'0': {'precision': 0.75, 'recall': 0.4090909090909091, 'f1-score': 0.5294117647058824, 'support': 22.0}, '1': {'precision': 0.6904761904761905, 'recall': 0.90625, 'f1-score': 0.7837837837837838, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7202380952380952, 'recall': 0.6576704545454546, 'f1-score': 0.656597774244833, 'support': 54.0}, 'weighted avg': {'precision': 0.7147266313932981, 'recall': 0.7037037037037037, 'f1-score': 0.6801507389742684, 'support': 54.0}}
No log 12.0 24 0.5902 {'0': {'precision': 0.6666666666666666, 'recall': 0.5454545454545454, 'f1-score': 0.6, 'support': 22.0}, '1': {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1-score': 0.7647058823529411, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6944444444444444, 'recall': 0.6789772727272727, 'f1-score': 0.6823529411764706, 'support': 54.0}, 'weighted avg': {'precision': 0.6995884773662552, 'recall': 0.7037037037037037, 'f1-score': 0.69760348583878, 'support': 54.0}}
No log 13.0 26 0.5839 {'0': {'precision': 0.6, 'recall': 0.6818181818181818, 'f1-score': 0.6382978723404256, 'support': 22.0}, '1': {'precision': 0.7586206896551724, 'recall': 0.6875, 'f1-score': 0.7213114754098361, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6793103448275861, 'recall': 0.6846590909090908, 'f1-score': 0.6798046738751309, 'support': 54.0}, 'weighted avg': {'precision': 0.6939974457215835, 'recall': 0.6851851851851852, 'f1-score': 0.68749111860378, 'support': 54.0}}
No log 14.0 28 0.5809 {'0': {'precision': 0.5925925925925926, 'recall': 0.7272727272727273, 'f1-score': 0.6530612244897959, 'support': 22.0}, '1': {'precision': 0.7777777777777778, 'recall': 0.65625, 'f1-score': 0.711864406779661, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6851851851851851, 'recall': 0.6917613636363636, 'f1-score': 0.6824628156347284, 'support': 54.0}, 'weighted avg': {'precision': 0.7023319615912208, 'recall': 0.6851851851851852, 'f1-score': 0.6879075547356419, 'support': 54.0}}
No log 15.0 30 0.5742 {'0': {'precision': 0.5925925925925926, 'recall': 0.7272727272727273, 'f1-score': 0.6530612244897959, 'support': 22.0}, '1': {'precision': 0.7777777777777778, 'recall': 0.65625, 'f1-score': 0.711864406779661, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6851851851851851, 'recall': 0.6917613636363636, 'f1-score': 0.6824628156347284, 'support': 54.0}, 'weighted avg': {'precision': 0.7023319615912208, 'recall': 0.6851851851851852, 'f1-score': 0.6879075547356419, 'support': 54.0}}
No log 16.0 32 0.5630 {'0': {'precision': 0.6, 'recall': 0.6818181818181818, 'f1-score': 0.6382978723404256, 'support': 22.0}, '1': {'precision': 0.7586206896551724, 'recall': 0.6875, 'f1-score': 0.7213114754098361, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6793103448275861, 'recall': 0.6846590909090908, 'f1-score': 0.6798046738751309, 'support': 54.0}, 'weighted avg': {'precision': 0.6939974457215835, 'recall': 0.6851851851851852, 'f1-score': 0.68749111860378, 'support': 54.0}}
No log 17.0 34 0.5591 {'0': {'precision': 0.7, 'recall': 0.6363636363636364, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1-score': 0.7878787878787878, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7323529411764705, 'recall': 0.7244318181818181, 'f1-score': 0.7272727272727273, 'support': 54.0}, 'weighted avg': {'precision': 0.7383442265795206, 'recall': 0.7407407407407407, 'f1-score': 0.7384960718294051, 'support': 54.0}}
No log 18.0 36 0.5496 {'0': {'precision': 0.6086956521739131, 'recall': 0.6363636363636364, 'f1-score': 0.6222222222222222, 'support': 22.0}, '1': {'precision': 0.7419354838709677, 'recall': 0.71875, 'f1-score': 0.7301587301587301, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6753155680224404, 'recall': 0.6775568181818181, 'f1-score': 0.6761904761904762, 'support': 54.0}, 'weighted avg': {'precision': 0.6876525894758714, 'recall': 0.6851851851851852, 'f1-score': 0.6861845972957084, 'support': 54.0}}
No log 19.0 38 0.5427 {'0': {'precision': 0.5833333333333334, 'recall': 0.6363636363636364, 'f1-score': 0.6086956521739131, 'support': 22.0}, '1': {'precision': 0.7333333333333333, 'recall': 0.6875, 'f1-score': 0.7096774193548387, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6583333333333333, 'recall': 0.6619318181818181, 'f1-score': 0.6591865357643759, 'support': 54.0}, 'weighted avg': {'precision': 0.6722222222222222, 'recall': 0.6666666666666666, 'f1-score': 0.6685366993922394, 'support': 54.0}}
No log 20.0 40 0.5372 {'0': {'precision': 0.6153846153846154, 'recall': 0.7272727272727273, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.7857142857142857, 'recall': 0.6875, 'f1-score': 0.7333333333333333, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7005494505494505, 'recall': 0.7073863636363636, 'f1-score': 0.7, 'support': 54.0}, 'weighted avg': {'precision': 0.7163207163207164, 'recall': 0.7037037037037037, 'f1-score': 0.7061728395061728, 'support': 54.0}}
No log 21.0 42 0.5395 {'0': {'precision': 0.5925925925925926, 'recall': 0.7272727272727273, 'f1-score': 0.6530612244897959, 'support': 22.0}, '1': {'precision': 0.7777777777777778, 'recall': 0.65625, 'f1-score': 0.711864406779661, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6851851851851851, 'recall': 0.6917613636363636, 'f1-score': 0.6824628156347284, 'support': 54.0}, 'weighted avg': {'precision': 0.7023319615912208, 'recall': 0.6851851851851852, 'f1-score': 0.6879075547356419, 'support': 54.0}}
No log 22.0 44 0.5482 {'0': {'precision': 0.5862068965517241, 'recall': 0.7727272727272727, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.8, 'recall': 0.625, 'f1-score': 0.7017543859649122, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.693103448275862, 'recall': 0.6988636363636364, 'f1-score': 0.6842105263157894, 'support': 54.0}, 'weighted avg': {'precision': 0.7128991060025542, 'recall': 0.6851851851851852, 'f1-score': 0.6874593892137751, 'support': 54.0}}
No log 23.0 46 0.5480 {'0': {'precision': 0.6129032258064516, 'recall': 0.8636363636363636, 'f1-score': 0.7169811320754716, 'support': 22.0}, '1': {'precision': 0.8695652173913043, 'recall': 0.625, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.741234221598878, 'recall': 0.7443181818181819, 'f1-score': 0.7221269296740995, 'support': 54.0}, 'weighted avg': {'precision': 0.7649992208196976, 'recall': 0.7222222222222222, 'f1-score': 0.7230798551553269, 'support': 54.0}}
No log 24.0 48 0.5387 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 25.0 50 0.5280 {'0': {'precision': 0.5769230769230769, 'recall': 0.6818181818181818, 'f1-score': 0.625, 'support': 22.0}, '1': {'precision': 0.75, 'recall': 0.65625, 'f1-score': 0.7, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6634615384615384, 'recall': 0.6690340909090908, 'f1-score': 0.6625, 'support': 54.0}, 'weighted avg': {'precision': 0.6794871794871795, 'recall': 0.6666666666666666, 'f1-score': 0.6694444444444444, 'support': 54.0}}
No log 26.0 52 0.5293 {'0': {'precision': 0.5769230769230769, 'recall': 0.6818181818181818, 'f1-score': 0.625, 'support': 22.0}, '1': {'precision': 0.75, 'recall': 0.65625, 'f1-score': 0.7, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6634615384615384, 'recall': 0.6690340909090908, 'f1-score': 0.6625, 'support': 54.0}, 'weighted avg': {'precision': 0.6794871794871795, 'recall': 0.6666666666666666, 'f1-score': 0.6694444444444444, 'support': 54.0}}
No log 27.0 54 0.5337 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 28.0 56 0.5526 {'0': {'precision': 0.6129032258064516, 'recall': 0.8636363636363636, 'f1-score': 0.7169811320754716, 'support': 22.0}, '1': {'precision': 0.8695652173913043, 'recall': 0.625, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.741234221598878, 'recall': 0.7443181818181819, 'f1-score': 0.7221269296740995, 'support': 54.0}, 'weighted avg': {'precision': 0.7649992208196976, 'recall': 0.7222222222222222, 'f1-score': 0.7230798551553269, 'support': 54.0}}
No log 29.0 58 0.5693 {'0': {'precision': 0.6060606060606061, 'recall': 0.9090909090909091, 'f1-score': 0.7272727272727273, 'support': 22.0}, '1': {'precision': 0.9047619047619048, 'recall': 0.59375, 'f1-score': 0.7169811320754716, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7554112554112554, 'recall': 0.7514204545454546, 'f1-score': 0.7221269296740995, 'support': 54.0}, 'weighted avg': {'precision': 0.783068783068783, 'recall': 0.7222222222222222, 'f1-score': 0.721174004192872, 'support': 54.0}}
No log 30.0 60 0.5618 {'0': {'precision': 0.59375, 'recall': 0.8636363636363636, 'f1-score': 0.7037037037037037, 'support': 22.0}, '1': {'precision': 0.8636363636363636, 'recall': 0.59375, 'f1-score': 0.7037037037037037, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7286931818181819, 'recall': 0.7286931818181819, 'f1-score': 0.7037037037037037, 'support': 54.0}, 'weighted avg': {'precision': 0.75368265993266, 'recall': 0.7037037037037037, 'f1-score': 0.7037037037037037, 'support': 54.0}}
No log 31.0 62 0.5456 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 32.0 64 0.5323 {'0': {'precision': 0.5925925925925926, 'recall': 0.7272727272727273, 'f1-score': 0.6530612244897959, 'support': 22.0}, '1': {'precision': 0.7777777777777778, 'recall': 0.65625, 'f1-score': 0.711864406779661, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6851851851851851, 'recall': 0.6917613636363636, 'f1-score': 0.6824628156347284, 'support': 54.0}, 'weighted avg': {'precision': 0.7023319615912208, 'recall': 0.6851851851851852, 'f1-score': 0.6879075547356419, 'support': 54.0}}
No log 33.0 66 0.5386 {'0': {'precision': 0.5925925925925926, 'recall': 0.7272727272727273, 'f1-score': 0.6530612244897959, 'support': 22.0}, '1': {'precision': 0.7777777777777778, 'recall': 0.65625, 'f1-score': 0.711864406779661, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6851851851851851, 'recall': 0.6917613636363636, 'f1-score': 0.6824628156347284, 'support': 54.0}, 'weighted avg': {'precision': 0.7023319615912208, 'recall': 0.6851851851851852, 'f1-score': 0.6879075547356419, 'support': 54.0}}
No log 34.0 68 0.5511 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 35.0 70 0.5582 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 36.0 72 0.5456 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 37.0 74 0.5422 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 38.0 76 0.5422 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 39.0 78 0.5409 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 40.0 80 0.5442 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 41.0 82 0.5519 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 42.0 84 0.5634 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 43.0 86 0.5594 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 44.0 88 0.5539 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 45.0 90 0.5495 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 46.0 92 0.5479 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 47.0 94 0.5505 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 48.0 96 0.5609 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 49.0 98 0.5618 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 50.0 100 0.5642 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 51.0 102 0.5520 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 52.0 104 0.5554 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 53.0 106 0.5512 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 54.0 108 0.5583 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 55.0 110 0.5543 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 56.0 112 0.5532 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 57.0 114 0.5456 {'0': {'precision': 0.6428571428571429, 'recall': 0.8181818181818182, 'f1-score': 0.72, 'support': 22.0}, '1': {'precision': 0.8461538461538461, 'recall': 0.6875, 'f1-score': 0.7586206896551724, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7445054945054945, 'recall': 0.7528409090909092, 'f1-score': 0.7393103448275862, 'support': 54.0}, 'weighted avg': {'precision': 0.7633292633292633, 'recall': 0.7407407407407407, 'f1-score': 0.7428863346104725, 'support': 54.0}}
No log 58.0 116 0.5491 {'0': {'precision': 0.6428571428571429, 'recall': 0.8181818181818182, 'f1-score': 0.72, 'support': 22.0}, '1': {'precision': 0.8461538461538461, 'recall': 0.6875, 'f1-score': 0.7586206896551724, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7445054945054945, 'recall': 0.7528409090909092, 'f1-score': 0.7393103448275862, 'support': 54.0}, 'weighted avg': {'precision': 0.7633292633292633, 'recall': 0.7407407407407407, 'f1-score': 0.7428863346104725, 'support': 54.0}}
No log 59.0 118 0.5537 {'0': {'precision': 0.6428571428571429, 'recall': 0.8181818181818182, 'f1-score': 0.72, 'support': 22.0}, '1': {'precision': 0.8461538461538461, 'recall': 0.6875, 'f1-score': 0.7586206896551724, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7445054945054945, 'recall': 0.7528409090909092, 'f1-score': 0.7393103448275862, 'support': 54.0}, 'weighted avg': {'precision': 0.7633292633292633, 'recall': 0.7407407407407407, 'f1-score': 0.7428863346104725, 'support': 54.0}}
No log 60.0 120 0.5527 {'0': {'precision': 0.6428571428571429, 'recall': 0.8181818181818182, 'f1-score': 0.72, 'support': 22.0}, '1': {'precision': 0.8461538461538461, 'recall': 0.6875, 'f1-score': 0.7586206896551724, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7445054945054945, 'recall': 0.7528409090909092, 'f1-score': 0.7393103448275862, 'support': 54.0}, 'weighted avg': {'precision': 0.7633292633292633, 'recall': 0.7407407407407407, 'f1-score': 0.7428863346104725, 'support': 54.0}}

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1