helenai's picture
Update README.md
fd1d860 verified
---
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
---
This is the [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) model, converted to OpenVINO, with int4 weights for the language model, int8 weights for the other models.
## Download Model
To download the model, run `pip install huggingface-hub[cli]` and then:
```
huggingface-cli download helenai/Qwen2.5-VL-7B-Instruct-ov-int4 --local-dir Qwen2.5-VL-7B-Instruct-ov-int4
```
## Run inference with OpenVINO GenAI
Use OpenVINO GenAI to run inference on this model. This model works with OpenVINO GenAI 2025.2 and later.
- Install OpenVINO GenAI and pillow:
```
pip install --upgrade openvino-genai pillow
```
- Download a test image: `curl -O "https://storage.openvinotoolkit.org/test_data/images/dog.jpg"`
- Run inference:
```python
import numpy as np
import openvino as ov
import openvino_genai
from PIL import Image
# Choose GPU instead of CPU in the line below to run the model on Intel integrated or discrete GPU
pipe = openvino_genai.VLMPipeline("Qwen2.5-VL-7B-Instruct-ov-int4", "CPU")
image = Image.open("dog.jpg")
# optional: resizing to a smaller size (depending on image and prompt) is often useful to speed up inference.
image = image.resize((128, 128))
image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.uint8)
image_data = ov.Tensor(image_data)
prompt = "Can you describe the image?"
result = pipe.generate(prompt, image=image_data, max_new_tokens=100)
print(result.texts[0])
```
See [OpenVINO GenAI repository](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#performing-visual-language-text-generation)
## Model export properties
Model export command:
```
optimum-cli export openvino -m Qwen/Qwen2.5-VL-7B-Instruct --weight-format int4 Qwen2.5-VL-7B-Instruct-ov-int4
```
### Framework versions
```
openvino : 2025.2.0-19140-c01cd93e24d-releases/2025/2
nncf : 2.17.0.dev0+c6296072
optimum_intel : 1.26.0.dev0+0e2ccef
optimum : 1.27.0
pytorch : 2.7.0+cpu
transformers : 4.51.3
```
### LLM export properties
```
all_layers : False
awq : False
backup_mode : int8_asym
compression_format : dequantize
gptq : False
group_size : 128
ignored_scope : []
lora_correction : False
mode : int4_asym
ratio : 1.0
scale_estimation : False
sensitivity_metric : weight_quantization_error
```