|  | --- | 
					
						
						|  | license: llama2 | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | ## Installation from source | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | git clone https://github.com/foundation-model-stack/fms-extras | 
					
						
						|  | cd fms-extras | 
					
						
						|  | pip install -e . | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Description | 
					
						
						|  |  | 
					
						
						|  | This model is intended to be used as an accelerator for [granite 7B (instruct lab)](https://huggingface.co/instructlab/granite-7b-lab) and takes inspiration | 
					
						
						|  | from the Medusa speculative decoding architecture. This accelerator modifies the MLP into a multi-stage MLP, where each stage predicts | 
					
						
						|  | a single token in the draft based on both a state vector and sampled token | 
					
						
						|  | from the prior stage (the base model can be considered stage 0). | 
					
						
						|  | The state vector from the base model provides contextual information to the accelerator, | 
					
						
						|  | while conditioning on prior sampled tokens allows it to produce higher-quality draft n-grams. | 
					
						
						|  |  | 
					
						
						|  | Note: The underlying MLP speculator is a generic architecture that can be trained with any generative model to accelerate inference. | 
					
						
						|  | Training is light-weight and can be completed in only a few days depending on base model size and speed. | 
					
						
						|  |  | 
					
						
						|  | ## Repository Links | 
					
						
						|  |  | 
					
						
						|  | 1. [Paged Attention KV-Cache / Speculator](https://github.com/foundation-model-stack/fms-extras) | 
					
						
						|  | 2. [Production Server with speculative decoding](https://github.com/IBM/text-generation-inference.git) | 
					
						
						|  | 3. [Speculator training](https://github.com/foundation-model-stack/fms-fsdp/pull/35) | 
					
						
						|  |  | 
					
						
						|  | ## Samples | 
					
						
						|  |  | 
					
						
						|  | _Note: For all samples, your environment must have access to cuda_ | 
					
						
						|  |  | 
					
						
						|  | ### Production Server Sample | 
					
						
						|  |  | 
					
						
						|  | *To try this out running in a production-like environment, please use the pre-built docker image:* | 
					
						
						|  |  | 
					
						
						|  | #### Setup | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | HF_HUB_CACHE=/hf_hub_cache | 
					
						
						|  | chmod a+w $HF_HUB_CACHE | 
					
						
						|  | HF_HUB_TOKEN="your huggingface hub token" | 
					
						
						|  | TGIS_IMAGE=quay.io/wxpe/text-gen-server:main.ee927a4 | 
					
						
						|  |  | 
					
						
						|  | docker pull $TGIS_IMAGE | 
					
						
						|  |  | 
					
						
						|  | # optionally download granite-7b-lab if the weights do not already exist | 
					
						
						|  | docker run --rm \ | 
					
						
						|  | -v $HF_HUB_CACHE:/models \ | 
					
						
						|  | -e HF_HUB_CACHE=/models \ | 
					
						
						|  | -e TRANSFORMERS_CACHE=/models \ | 
					
						
						|  | $TGIS_IMAGE \ | 
					
						
						|  | text-generation-server download-weights \ | 
					
						
						|  | instructlab/granite-7b-lab \ | 
					
						
						|  | --token $HF_HUB_TOKEN | 
					
						
						|  |  | 
					
						
						|  | # optionally download the speculator model if the weights do not already exist | 
					
						
						|  | docker run --rm \ | 
					
						
						|  | -v $HF_HUB_CACHE:/models \ | 
					
						
						|  | -e HF_HUB_CACHE=/models \ | 
					
						
						|  | -e TRANSFORMERS_CACHE=/models \ | 
					
						
						|  | $TGIS_IMAGE \ | 
					
						
						|  | text-generation-server download-weights \ | 
					
						
						|  | ibm/granite-7b-lab-accelerator \ | 
					
						
						|  | --token $HF_HUB_TOKEN | 
					
						
						|  |  | 
					
						
						|  | # note: if the weights were downloaded separately (not with the above commands), please place them in the HF_HUB_CACHE directoy and refer to them with /models/<model_name> | 
					
						
						|  | docker run -d --rm --gpus all \ | 
					
						
						|  | --name my-tgis-server \ | 
					
						
						|  | -p 8033:8033 \ | 
					
						
						|  | -v $HF_HUB_CACHE:/models \ | 
					
						
						|  | -e HF_HUB_CACHE=/models \ | 
					
						
						|  | -e TRANSFORMERS_CACHE=/models \ | 
					
						
						|  | -e MODEL_NAME=instructlab/granite-7b-lab \ | 
					
						
						|  | -e SPECULATOR_NAME=ibm/granite-7b-lab-accelerator \ | 
					
						
						|  | -e FLASH_ATTENTION=true \ | 
					
						
						|  | -e PAGED_ATTENTION=true \ | 
					
						
						|  | -e DTYPE=float16 \ | 
					
						
						|  | $TGIS_IMAGE | 
					
						
						|  |  | 
					
						
						|  | # check logs and wait for "gRPC server started on port 8033" and "HTTP server started on port 3000" | 
					
						
						|  | docker logs my-tgis-server -f | 
					
						
						|  |  | 
					
						
						|  | # get the client sample (Note: The first prompt will take longer as there is a warmup time) | 
					
						
						|  | conda create -n tgis-client-env python=3.11 | 
					
						
						|  | conda activate tgis-client-env | 
					
						
						|  | git clone --branch main --single-branch https://github.com/IBM/text-generation-inference.git | 
					
						
						|  | cd text-generation-inference/integration_tests | 
					
						
						|  | make gen-client | 
					
						
						|  | pip install . --no-cache-dir | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | #### Run Sample | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | python sample_client.py | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | _Note: first prompt may be slower as there is a slight warmup time_ | 
					
						
						|  |  | 
					
						
						|  | ### Minimal Sample | 
					
						
						|  |  | 
					
						
						|  | *To try this out with the fms-native compiled model, please execute the following:* | 
					
						
						|  |  | 
					
						
						|  | #### Install | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | git clone --branch ibm_7b_instruct_lab_variant --single-branch https://github.com/JRosenkranz/fms-extras.git | 
					
						
						|  | (cd fms-extras && pip install -e .) | 
					
						
						|  | pip install transformers==4.35.0 sentencepiece numpy | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | #### Run Sample | 
					
						
						|  |  | 
					
						
						|  | ##### batch_size=1 (compile + cudagraphs) | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | MODEL_PATH=/path/to/instructlab/granite-7b-lab | 
					
						
						|  | python fms-extras/scripts/paged_speculative_inference.py \ | 
					
						
						|  | --variant=7b.ibm_instruct_lab \ | 
					
						
						|  | --model_path=$MODEL_PATH \ | 
					
						
						|  | --model_source=hf \ | 
					
						
						|  | --tokenizer=$MODEL_PATH \ | 
					
						
						|  | --speculator_path=ibm/granite-7b-lab-accelerator \ | 
					
						
						|  | --speculator_source=hf \ | 
					
						
						|  | --speculator_variant=1_4b \ | 
					
						
						|  | --top_k_tokens_per_head=4,3,2,2,2 \ | 
					
						
						|  | --compile \ | 
					
						
						|  | --compile_mode=reduce-overhead | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ##### batch_size=1 (compile) | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | MODEL_PATH=/path/to/instructlab/granite-7b-lab | 
					
						
						|  | python fms-extras/scripts/paged_speculative_inference.py \ | 
					
						
						|  | --variant=7b.ibm_instruct_lab \ | 
					
						
						|  | --model_path=$MODEL_PATH \ | 
					
						
						|  | --model_source=hf \ | 
					
						
						|  | --tokenizer=$MODEL_PATH \ | 
					
						
						|  | --speculator_path=ibm/granite-7b-lab-accelerator \ | 
					
						
						|  | --speculator_source=hf \ | 
					
						
						|  | --speculator_variant=1_4b \ | 
					
						
						|  | --top_k_tokens_per_head=4,3,2,2,2 \ | 
					
						
						|  | --compile \ | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ##### batch_size=4 (compile) | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | MODEL_PATH=/path/to/instructlab/granite-7b-lab | 
					
						
						|  | python fms-extras/scripts/paged_speculative_inference.py \ | 
					
						
						|  | --variant=7b.ibm_instruct_lab \ | 
					
						
						|  | --model_path=$MODEL_PATH \ | 
					
						
						|  | --model_source=hf \ | 
					
						
						|  | --tokenizer=$MODEL_PATH \ | 
					
						
						|  | --speculator_path=ibm/granite-7b-lab-accelerator \ | 
					
						
						|  | --speculator_source=hf \ | 
					
						
						|  | --speculator_variant=1_4b \ | 
					
						
						|  | --top_k_tokens_per_head=4,3,2,2,2 \ | 
					
						
						|  | --batch_input \ | 
					
						
						|  | --compile \ | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | Sample code can be found [here](https://github.com/foundation-model-stack/fms-extras/blob/main/scripts/paged_speculative_inference.py) |