|  | --- | 
					
						
						|  | language: | 
					
						
						|  | - id | 
					
						
						|  | - jv | 
					
						
						|  | - sun | 
					
						
						|  | datasets: | 
					
						
						|  | - mozilla-foundation/common_voice_7_0 | 
					
						
						|  | - openslr | 
					
						
						|  | - magic_data | 
					
						
						|  | - titml | 
					
						
						|  | metrics: | 
					
						
						|  | - wer | 
					
						
						|  | tags: | 
					
						
						|  | - audio | 
					
						
						|  | - automatic-speech-recognition | 
					
						
						|  | - hf-asr-leaderboard | 
					
						
						|  | - id | 
					
						
						|  | - jv | 
					
						
						|  | - robust-speech-event | 
					
						
						|  | - speech | 
					
						
						|  | - su | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | model-index: | 
					
						
						|  | - name: Wav2Vec2 Indonesian Javanese and Sundanese by Indonesian NLP | 
					
						
						|  | results: | 
					
						
						|  | - task: | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: Common Voice 6.1 | 
					
						
						|  | type: common_voice | 
					
						
						|  | args: id | 
					
						
						|  | metrics: | 
					
						
						|  | - name: Test WER | 
					
						
						|  | type: wer | 
					
						
						|  | value: 4.056 | 
					
						
						|  | - name: Test CER | 
					
						
						|  | type: cer | 
					
						
						|  | value: 1.472 | 
					
						
						|  | - task: | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: Common Voice 7 | 
					
						
						|  | type: mozilla-foundation/common_voice_7_0 | 
					
						
						|  | args: id | 
					
						
						|  | metrics: | 
					
						
						|  | - name: Test WER | 
					
						
						|  | type: wer | 
					
						
						|  | value: 4.492 | 
					
						
						|  | - name: Test CER | 
					
						
						|  | type: cer | 
					
						
						|  | value: 1.577 | 
					
						
						|  | - task: | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: Robust Speech Event - Dev Data | 
					
						
						|  | type: speech-recognition-community-v2/dev_data | 
					
						
						|  | args: id | 
					
						
						|  | metrics: | 
					
						
						|  | - name: Test WER | 
					
						
						|  | type: wer | 
					
						
						|  | value: 48.94 | 
					
						
						|  | - task: | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: Robust Speech Event - Test Data | 
					
						
						|  | type: speech-recognition-community-v2/eval_data | 
					
						
						|  | args: id | 
					
						
						|  | metrics: | 
					
						
						|  | - name: Test WER | 
					
						
						|  | type: wer | 
					
						
						|  | value: 68.95 | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Multilingual Speech Recognition for Indonesian Languages | 
					
						
						|  |  | 
					
						
						|  | This is the model built for the project | 
					
						
						|  | [Multilingual Speech Recognition for Indonesian Languages](https://github.com/indonesian-nlp/multilingual-asr). | 
					
						
						|  | It is a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) | 
					
						
						|  | model on the [Indonesian Common Voice dataset](https://huggingface.co/datasets/common_voice), | 
					
						
						|  | [High-quality TTS data for Javanese - SLR41](https://huggingface.co/datasets/openslr), and | 
					
						
						|  | [High-quality TTS data for Sundanese - SLR44](https://huggingface.co/datasets/openslr) datasets. | 
					
						
						|  |  | 
					
						
						|  | We also provide a [live demo](https://huggingface.co/spaces/indonesian-nlp/multilingual-asr) to test the model. | 
					
						
						|  |  | 
					
						
						|  | When using this model, make sure that your speech input is sampled at 16kHz. | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  | The model can be used directly (without a language model) as follows: | 
					
						
						|  | ```python | 
					
						
						|  | import torch | 
					
						
						|  | import torchaudio | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | 
					
						
						|  |  | 
					
						
						|  | test_dataset = load_dataset("common_voice", "id", split="test[:2%]") | 
					
						
						|  |  | 
					
						
						|  | processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-indonesian-javanese-sundanese") | 
					
						
						|  | model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-indonesian-javanese-sundanese") | 
					
						
						|  |  | 
					
						
						|  | resampler = torchaudio.transforms.Resample(48_000, 16_000) | 
					
						
						|  |  | 
					
						
						|  | # Preprocessing the datasets. | 
					
						
						|  | # We need to read the aduio files as arrays | 
					
						
						|  | def speech_file_to_array_fn(batch): | 
					
						
						|  | speech_array, sampling_rate = torchaudio.load(batch["path"]) | 
					
						
						|  | batch["speech"] = resampler(speech_array).squeeze().numpy() | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | test_dataset = test_dataset.map(speech_file_to_array_fn) | 
					
						
						|  | inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits | 
					
						
						|  |  | 
					
						
						|  | predicted_ids = torch.argmax(logits, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | print("Prediction:", processor.batch_decode(predicted_ids)) | 
					
						
						|  | print("Reference:", test_dataset[:2]["sentence"]) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Evaluation | 
					
						
						|  |  | 
					
						
						|  | The model can be evaluated as follows on the Indonesian test data of Common Voice. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | import torch | 
					
						
						|  | import torchaudio | 
					
						
						|  | from datasets import load_dataset, load_metric | 
					
						
						|  | from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | 
					
						
						|  | import re | 
					
						
						|  |  | 
					
						
						|  | test_dataset = load_dataset("common_voice", "id", split="test") | 
					
						
						|  | wer = load_metric("wer") | 
					
						
						|  |  | 
					
						
						|  | processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-indonesian-javanese-sundanese") | 
					
						
						|  | model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-indonesian-javanese-sundanese") | 
					
						
						|  | model.to("cuda") | 
					
						
						|  |  | 
					
						
						|  | chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' | 
					
						
						|  |  | 
					
						
						|  | resampler = torchaudio.transforms.Resample(48_000, 16_000) | 
					
						
						|  |  | 
					
						
						|  | # Preprocessing the datasets. | 
					
						
						|  | # We need to read the audio files as arrays | 
					
						
						|  | def speech_file_to_array_fn(batch): | 
					
						
						|  | batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() | 
					
						
						|  | speech_array, sampling_rate = torchaudio.load(batch["path"]) | 
					
						
						|  | batch["speech"] = resampler(speech_array).squeeze().numpy() | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | test_dataset = test_dataset.map(speech_file_to_array_fn) | 
					
						
						|  |  | 
					
						
						|  | # Preprocessing the datasets. | 
					
						
						|  | # We need to read the audio files as arrays | 
					
						
						|  | def evaluate(batch): | 
					
						
						|  | inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits | 
					
						
						|  |  | 
					
						
						|  | pred_ids = torch.argmax(logits, dim=-1) | 
					
						
						|  | batch["pred_strings"] = processor.batch_decode(pred_ids) | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | result = test_dataset.map(evaluate, batched=True, batch_size=8) | 
					
						
						|  |  | 
					
						
						|  | print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | **Test Result**: 11.57 % | 
					
						
						|  |  | 
					
						
						|  | ## Training | 
					
						
						|  |  | 
					
						
						|  | The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ...  # TODO | 
					
						
						|  |  | 
					
						
						|  | The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition) | 
					
						
						|  | (will be available soon) | 
					
						
						|  |  |