support-multiple-task-ids
#5
by
michael-guenther
- opened
- tokenizer.py +42 -15
tokenizer.py
CHANGED
|
@@ -5,19 +5,26 @@ import warnings
|
|
| 5 |
|
| 6 |
|
| 7 |
class JinaTokenizer(RobertaTokenizer):
|
| 8 |
-
def __init__(self, *args,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
super().__init__(*args, **kwargs)
|
| 10 |
-
self.task_type_vocab_size = task_type_vocab_size
|
| 11 |
|
| 12 |
def __call__(self, *args, task_type=None, **kwargs):
|
| 13 |
batch_encoding = super().__call__(*args, **kwargs)
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
| 21 |
return batch_encoding
|
| 22 |
|
| 23 |
def _batch_encode_plus(self, *args, task_type=None, **kwargs):
|
|
@@ -45,18 +52,38 @@ class JinaTokenizer(RobertaTokenizer):
|
|
| 45 |
return batch_encoding
|
| 46 |
|
| 47 |
@staticmethod
|
| 48 |
-
def _get_task_type_ids(batch_encoding: BatchEncoding, task_type
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
if isinstance(batch_encoding['input_ids'], torch.Tensor):
|
| 50 |
shape = batch_encoding['input_ids'].shape
|
| 51 |
-
return torch.ones(shape, dtype=torch.long)
|
| 52 |
else:
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
if isinstance(batch_encoding['input_ids'], list):
|
| 55 |
-
return (
|
|
|
|
|
|
|
| 56 |
elif isinstance(batch_encoding['input_ids'], np.array):
|
| 57 |
-
return (
|
|
|
|
|
|
|
| 58 |
else:
|
| 59 |
warnings.warn(
|
| 60 |
'input_ids is not a torch tensor, numpy array, or list. Returning torch tensor'
|
| 61 |
)
|
| 62 |
-
return torch.ones(shape, dtype=torch.long)
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class JinaTokenizer(RobertaTokenizer):
|
| 8 |
+
def __init__(self, *args, **kwargs):
|
| 9 |
+
"""
|
| 10 |
+
JinaTokenizer extends the RobertaTokenizer class to include task_type_ids in
|
| 11 |
+
the batch encoding.
|
| 12 |
+
The task_type_ids are used to pass instruction information to the model.
|
| 13 |
+
A task_type should either be an integer or a sequence of integers with the same
|
| 14 |
+
length as the batch size.
|
| 15 |
+
"""
|
| 16 |
super().__init__(*args, **kwargs)
|
|
|
|
| 17 |
|
| 18 |
def __call__(self, *args, task_type=None, **kwargs):
|
| 19 |
batch_encoding = super().__call__(*args, **kwargs)
|
| 20 |
+
if task_type is not None:
|
| 21 |
+
batch_encoding = BatchEncoding(
|
| 22 |
+
{
|
| 23 |
+
'task_type_ids': self._get_task_type_ids(batch_encoding, task_type),
|
| 24 |
+
**batch_encoding,
|
| 25 |
+
},
|
| 26 |
+
tensor_type=kwargs.get('return_tensors'),
|
| 27 |
+
)
|
| 28 |
return batch_encoding
|
| 29 |
|
| 30 |
def _batch_encode_plus(self, *args, task_type=None, **kwargs):
|
|
|
|
| 52 |
return batch_encoding
|
| 53 |
|
| 54 |
@staticmethod
|
| 55 |
+
def _get_task_type_ids(batch_encoding: BatchEncoding, task_type):
|
| 56 |
+
|
| 57 |
+
def apply_task_type(m, x):
|
| 58 |
+
x = torch.tensor(x)
|
| 59 |
+
assert (
|
| 60 |
+
len(x.shape) == 0 or x.shape[0] == m.shape[0]
|
| 61 |
+
), 'The shape of task_type does not match the size of the batch.'
|
| 62 |
+
return m * x if len(x.shape) == 0 else m * x[:, None]
|
| 63 |
+
|
| 64 |
if isinstance(batch_encoding['input_ids'], torch.Tensor):
|
| 65 |
shape = batch_encoding['input_ids'].shape
|
| 66 |
+
return apply_task_type(torch.ones(shape, dtype=torch.long), task_type)
|
| 67 |
else:
|
| 68 |
+
try:
|
| 69 |
+
shape = torch.tensor(batch_encoding['input_ids']).shape
|
| 70 |
+
except:
|
| 71 |
+
raise ValueError(
|
| 72 |
+
"Unable to create tensor, you should probably "
|
| 73 |
+
"activate truncation and/or padding with "
|
| 74 |
+
"'padding=True' 'truncation=True' to have batched "
|
| 75 |
+
"tensors with the same length."
|
| 76 |
+
)
|
| 77 |
if isinstance(batch_encoding['input_ids'], list):
|
| 78 |
+
return (
|
| 79 |
+
apply_task_type(torch.ones(shape, dtype=torch.long), task_type)
|
| 80 |
+
).tolist()
|
| 81 |
elif isinstance(batch_encoding['input_ids'], np.array):
|
| 82 |
+
return (
|
| 83 |
+
apply_task_type(torch.ones(shape, dtype=torch.long), task_type)
|
| 84 |
+
).numpy()
|
| 85 |
else:
|
| 86 |
warnings.warn(
|
| 87 |
'input_ids is not a torch tensor, numpy array, or list. Returning torch tensor'
|
| 88 |
)
|
| 89 |
+
return apply_task_type(torch.ones(shape, dtype=torch.long), task_type)
|