results
This model is a fine-tuned version of deepset/gbert-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5650
- Accuracy: 0.8403
- F1: 0.8328
- Precision: 0.8416
- Recall: 0.8403
- F1 Macro: 0.6886
- Precision Macro: 0.6871
- Recall Macro: 0.7119
- F1 Micro: 0.8403
- Precision Micro: 0.8403
- Recall Micro: 0.8403
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Macro | Precision Macro | Recall Macro | F1 Micro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1687 | 0.3891 | 100 | 1.7221 | 0.6317 | 0.5563 | 0.5358 | 0.6317 | 0.2779 | 0.2937 | 0.2938 | 0.6317 | 0.6317 | 0.6317 |
1.2239 | 0.7782 | 200 | 0.8836 | 0.7856 | 0.7633 | 0.7696 | 0.7856 | 0.5175 | 0.5077 | 0.5567 | 0.7856 | 0.7856 | 0.7856 |
0.7758 | 1.1673 | 300 | 0.7089 | 0.8107 | 0.7922 | 0.7939 | 0.8107 | 0.5917 | 0.5889 | 0.6185 | 0.8107 | 0.8107 | 0.8107 |
0.6436 | 1.5564 | 400 | 0.6498 | 0.8250 | 0.8136 | 0.8220 | 0.8250 | 0.6330 | 0.6331 | 0.6563 | 0.8250 | 0.8250 | 0.8250 |
0.5815 | 1.9455 | 500 | 0.6037 | 0.8300 | 0.8227 | 0.8338 | 0.8300 | 0.6583 | 0.6478 | 0.6890 | 0.8300 | 0.8300 | 0.8300 |
0.4695 | 2.3346 | 600 | 0.5771 | 0.8389 | 0.8319 | 0.8409 | 0.8389 | 0.6729 | 0.6688 | 0.6984 | 0.8389 | 0.8389 | 0.8389 |
0.4336 | 2.7237 | 700 | 0.5724 | 0.8362 | 0.8280 | 0.8395 | 0.8362 | 0.6753 | 0.6682 | 0.7038 | 0.8362 | 0.8362 | 0.8362 |
0.4135 | 3.1128 | 800 | 0.5650 | 0.8403 | 0.8328 | 0.8416 | 0.8403 | 0.6886 | 0.6871 | 0.7119 | 0.8403 | 0.8403 | 0.8403 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.3
- Downloads last month
- 6
Model tree for kugler/gbert-large-AmDi-synset-classifier
Base model
deepset/gbert-large