gbert_synset_classifier_marked
This model is a fine-tuned version of deepset/gbert-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5043
- Accuracy: 0.8515
- F1: 0.8487
- Precision: 0.8526
- Recall: 0.8515
- F1 Macro: 0.7531
- Precision Macro: 0.7471
- Recall Macro: 0.7706
- F1 Micro: 0.8515
- Precision Micro: 0.8515
- Recall Micro: 0.8515
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Macro | Precision Macro | Recall Macro | F1 Micro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.9643 | 0.3891 | 100 | 1.2450 | 0.7537 | 0.7157 | 0.7077 | 0.7537 | 0.4231 | 0.4210 | 0.4559 | 0.7537 | 0.7537 | 0.7537 |
0.9779 | 0.7782 | 200 | 0.6959 | 0.8138 | 0.8009 | 0.8022 | 0.8138 | 0.5690 | 0.5784 | 0.5873 | 0.8138 | 0.8138 | 0.8138 |
0.6664 | 1.1673 | 300 | 0.5947 | 0.8313 | 0.8222 | 0.8313 | 0.8313 | 0.6503 | 0.6570 | 0.6716 | 0.8313 | 0.8313 | 0.8313 |
0.5523 | 1.5564 | 400 | 0.5216 | 0.8448 | 0.8365 | 0.8405 | 0.8448 | 0.6824 | 0.6759 | 0.7057 | 0.8448 | 0.8448 | 0.8448 |
0.5126 | 1.9455 | 500 | 0.5216 | 0.8484 | 0.8417 | 0.8499 | 0.8484 | 0.7004 | 0.6848 | 0.7357 | 0.8484 | 0.8484 | 0.8484 |
0.4103 | 2.3346 | 600 | 0.5001 | 0.8533 | 0.8497 | 0.8579 | 0.8533 | 0.7212 | 0.7252 | 0.7375 | 0.8533 | 0.8533 | 0.8533 |
0.3733 | 2.7237 | 700 | 0.5010 | 0.8466 | 0.8403 | 0.8484 | 0.8466 | 0.7325 | 0.7274 | 0.7538 | 0.8466 | 0.8466 | 0.8466 |
0.3654 | 3.1128 | 800 | 0.4934 | 0.8524 | 0.8478 | 0.8547 | 0.8524 | 0.7439 | 0.7411 | 0.7630 | 0.8524 | 0.8524 | 0.8524 |
0.2761 | 3.5019 | 900 | 0.5038 | 0.8533 | 0.8495 | 0.8536 | 0.8533 | 0.7611 | 0.7527 | 0.7808 | 0.8533 | 0.8533 | 0.8533 |
0.274 | 3.8911 | 1000 | 0.5043 | 0.8515 | 0.8487 | 0.8526 | 0.8515 | 0.7531 | 0.7471 | 0.7706 | 0.8515 | 0.8515 | 0.8515 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.3
- Downloads last month
- 8
Model tree for kugler/gbert-large-AmDi-synset-classifier-marked
Base model
deepset/gbert-large