|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: deepset/gbert-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: gbert_synset_classifier_pair |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gbert_synset_classifier_pair |
|
|
|
This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4826 |
|
- Accuracy: 0.8551 |
|
- F1: 0.8501 |
|
- Precision: 0.8590 |
|
- Recall: 0.8551 |
|
- F1 Macro: 0.7419 |
|
- Precision Macro: 0.7334 |
|
- Recall Macro: 0.7673 |
|
- F1 Micro: 0.8551 |
|
- Precision Micro: 0.8551 |
|
- Recall Micro: 0.8551 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 20 |
|
- eval_batch_size: 20 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 80 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Macro | Precision Macro | Recall Macro | F1 Micro | Precision Micro | Recall Micro | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:| |
|
| 2.7743 | 0.3891 | 100 | 1.0270 | 0.7995 | 0.7723 | 0.7757 | 0.7995 | 0.5034 | 0.5166 | 0.5282 | 0.7995 | 0.7995 | 0.7995 | |
|
| 0.8957 | 0.7782 | 200 | 0.6587 | 0.8291 | 0.8176 | 0.8179 | 0.8291 | 0.5871 | 0.5863 | 0.6064 | 0.8291 | 0.8291 | 0.8291 | |
|
| 0.6278 | 1.1673 | 300 | 0.5440 | 0.8457 | 0.8363 | 0.8395 | 0.8457 | 0.6407 | 0.6380 | 0.6622 | 0.8457 | 0.8457 | 0.8457 | |
|
| 0.5132 | 1.5564 | 400 | 0.5295 | 0.8362 | 0.8275 | 0.8355 | 0.8362 | 0.6593 | 0.6525 | 0.6857 | 0.8362 | 0.8362 | 0.8362 | |
|
| 0.4843 | 1.9455 | 500 | 0.4930 | 0.8511 | 0.8439 | 0.8500 | 0.8511 | 0.6777 | 0.6675 | 0.7028 | 0.8511 | 0.8511 | 0.8511 | |
|
| 0.39 | 2.3346 | 600 | 0.4827 | 0.8564 | 0.8521 | 0.8555 | 0.8564 | 0.7073 | 0.6989 | 0.7287 | 0.8564 | 0.8564 | 0.8564 | |
|
| 0.3536 | 2.7237 | 700 | 0.4818 | 0.8551 | 0.8492 | 0.8576 | 0.8551 | 0.7314 | 0.7421 | 0.7476 | 0.8551 | 0.8551 | 0.8551 | |
|
| 0.3462 | 3.1128 | 800 | 0.4826 | 0.8551 | 0.8501 | 0.8590 | 0.8551 | 0.7419 | 0.7334 | 0.7673 | 0.8551 | 0.8551 | 0.8551 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.20.3 |
|
|