gbert_synset_classifier_amdi_small

This model is a fine-tuned version of deepset/gbert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6371
  • Accuracy: 0.8443
  • F1: 0.8414
  • Precision: 0.8523
  • Recall: 0.8443
  • F1 Macro: 0.7742
  • Precision Macro: 0.7539
  • Recall Macro: 0.8118
  • F1 Micro: 0.8443
  • Precision Micro: 0.8443
  • Recall Micro: 0.8443

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall F1 Macro Precision Macro Recall Macro F1 Micro Precision Micro Recall Micro
3.1817 0.6483 100 1.7424 0.6200 0.5455 0.5576 0.6200 0.2894 0.3465 0.2954 0.6200 0.6200 0.6200
1.0711 1.2966 200 0.7171 0.8140 0.7971 0.7992 0.8140 0.5958 0.5870 0.6238 0.8140 0.8140 0.8140
0.649 1.9449 300 0.6003 0.8275 0.8184 0.8282 0.8275 0.6797 0.6812 0.7138 0.8275 0.8275 0.8275
0.4903 2.5932 400 0.5668 0.8336 0.8268 0.8375 0.8336 0.6942 0.6869 0.7271 0.8336 0.8336 0.8336
0.4095 3.2415 500 0.5511 0.8387 0.8351 0.8398 0.8387 0.7224 0.7198 0.7414 0.8387 0.8387 0.8387
0.3586 3.8898 600 0.5313 0.8415 0.8360 0.8452 0.8415 0.7188 0.7075 0.7481 0.8415 0.8415 0.8415
0.2813 4.5381 700 0.5442 0.8485 0.8451 0.8502 0.8485 0.7290 0.7355 0.7419 0.8485 0.8485 0.8485
0.2543 5.1864 800 0.5736 0.8494 0.8461 0.8515 0.8494 0.7812 0.7708 0.8047 0.8494 0.8494 0.8494
0.1928 5.8347 900 0.5791 0.8448 0.8419 0.8484 0.8448 0.7646 0.7536 0.7899 0.8448 0.8448 0.8448
0.1645 6.4830 1000 0.6371 0.8443 0.8414 0.8523 0.8443 0.7742 0.7539 0.8118 0.8443 0.8443 0.8443

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.3
Downloads last month
8
Safetensors
Model size
336M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for kugler/gbert-large-AmDi.small-synset-classifier

Finetuned
(35)
this model