|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: deepset/gbert-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: gbert_synset_classifier_amdi_tiny |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gbert_synset_classifier_amdi_tiny |
|
|
|
This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6469 |
|
- Accuracy: 0.8376 |
|
- F1: 0.8366 |
|
- Precision: 0.8446 |
|
- Recall: 0.8376 |
|
- F1 Macro: 0.8202 |
|
- Precision Macro: 0.7900 |
|
- Recall Macro: 0.8625 |
|
- F1 Micro: 0.8376 |
|
- Precision Micro: 0.8376 |
|
- Recall Micro: 0.8376 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Macro | Precision Macro | Recall Macro | F1 Micro | Precision Micro | Recall Micro | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:| |
|
| 2.7014 | 0.8584 | 100 | 1.1834 | 0.6919 | 0.6499 | 0.6573 | 0.6919 | 0.4964 | 0.5670 | 0.4997 | 0.6919 | 0.6919 | 0.6919 | |
|
| 0.7696 | 1.7167 | 200 | 0.5970 | 0.8241 | 0.8188 | 0.8227 | 0.8241 | 0.7784 | 0.7603 | 0.8062 | 0.8241 | 0.8241 | 0.8241 | |
|
| 0.4739 | 2.5751 | 300 | 0.5408 | 0.8321 | 0.8290 | 0.8381 | 0.8321 | 0.8082 | 0.7815 | 0.8508 | 0.8321 | 0.8321 | 0.8321 | |
|
| 0.3743 | 3.4335 | 400 | 0.5343 | 0.8426 | 0.8385 | 0.8480 | 0.8426 | 0.8269 | 0.8046 | 0.8598 | 0.8426 | 0.8426 | 0.8426 | |
|
| 0.2931 | 4.2918 | 500 | 0.5188 | 0.8469 | 0.8465 | 0.8516 | 0.8469 | 0.8312 | 0.8133 | 0.8552 | 0.8469 | 0.8469 | 0.8469 | |
|
| 0.2175 | 5.1502 | 600 | 0.5697 | 0.8426 | 0.8419 | 0.8506 | 0.8426 | 0.8295 | 0.8093 | 0.8572 | 0.8426 | 0.8426 | 0.8426 | |
|
| 0.1689 | 6.0086 | 700 | 0.5781 | 0.8426 | 0.8421 | 0.8470 | 0.8426 | 0.8322 | 0.8164 | 0.8540 | 0.8426 | 0.8426 | 0.8426 | |
|
| 0.1174 | 6.8670 | 800 | 0.6469 | 0.8376 | 0.8366 | 0.8446 | 0.8376 | 0.8202 | 0.7900 | 0.8625 | 0.8376 | 0.8376 | 0.8376 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.20.3 |
|
|