File size: 7,175 Bytes
			
			b156b02 492f6af b156b02 492f6af 2ae17e5 492f6af 2ae17e5 492f6af b399505 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af 2ae17e5 492f6af  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256  | 
								---
license: apache-2.0
tags:
- image-captioning
- multimodal
- vision-language
- diffusion
- pytorch
- transformers
library_name: transformers
pipeline_tag: image-to-text
datasets:
- conceptual_captions
- coco
model_type: VLV_decoder
---
# VLV Captioner Model
This is a VLV (Vision-Language-Vision) model for image captioning. The model combines stable diffusion image encoding with Qwen language model for generating descriptive captions from images.
## Model Description
The VLV Captioner is a multimodal model that:
- Uses a diffusion-based vision encoder to extract image features
- Employs the Qwen2.5-3B language model for text generation
- Generates natural language descriptions of input images
## Model Architecture
- **Vision Encoder**: Stable Diffusion-based image encoder with Florence2 components
- **Language Model**: Qwen2.5-3B transformer model
- **Image Size**: 384x384 pixels
- **Max Caption Length**: 300 tokens
- **Precision**: Mixed precision (bfloat16/float32)
## Usage
### Method 1: Load from Hugging Face Hub
```python
from transformers import AutoModel, AutoConfig
from PIL import Image
import torch
import os
# Optional: Set custom cache directory if needed
cache_dir = "/path/to/your/cache"  # Use a directory with sufficient space
os.makedirs(cache_dir, exist_ok=True)
# Load the model with authentication token (if required)
token = os.getenv('HUGGINGFACE_TOKEN')  # or your token string
print("Loading config...")
config = AutoConfig.from_pretrained(
    "your-username/vlv-captioner", 
    trust_remote_code=True, 
    token=token, 
    cache_dir=cache_dir
)
print("Loading model...")
try:
    model = AutoModel.from_pretrained(
        "your-username/vlv-captioner", 
        trust_remote_code=True, 
        token=token, 
        cache_dir=cache_dir,
        torch_dtype=torch.float32,  # Specify dtype explicitly
        low_cpu_mem_usage=True
        # Note: Avoid device_map="auto" to prevent meta tensor issues
    )
    print("Model loaded successfully!")
    
    # Load and process an image
    image = Image.open("path/to/your/image.jpg")
    
    # Move model to GPU if available
    if torch.cuda.is_available():
        model = model.to('cuda')
        print("Model moved to GPU!")
    
    # Generate caption
    print("Generating caption...")
    with torch.no_grad():
        captions = model([image], max_length=300)
        
        # Handle different possible output formats
        if hasattr(captions, 'generated_text'):
            print("Generated caption:", captions.generated_text[0])
        elif isinstance(captions, list):
            print("Generated caption:", captions[0])
        else:
            print("Generated caption:", captions)
            
except Exception as e:
    print(f"Error during model loading or inference: {e}")
    # If cached files are corrupted, try clearing cache and redownloading
    import shutil
    cache_path = f"{cache_dir}/modules/transformers_modules/your-username/vlv-captioner"
    if os.path.exists(cache_path):
        print(f"Clearing cache at {cache_path}")
        shutil.rmtree(cache_path)
    
    # Retry with force download
    model = AutoModel.from_pretrained(
        "your-username/vlv-captioner", 
        trust_remote_code=True, 
        token=token, 
        cache_dir=cache_dir,
        force_download=True,
        torch_dtype=torch.float32
    )
```
### Method 2: Load from original checkpoint
```python
from VLV_stage2 import VLV_MODEL
# Load from original .pt checkpoint file
model = VLV_MODEL.from_checkpoint("path/to/model.pt")
# Load and process an image
image = Image.open("path/to/your/image.jpg")
# Generate caption
with torch.no_grad():
    captions = model([image], max_length=300)
    print(captions.generated_text[0])  # Generated caption
```
## Model Details
- **Model Type**: Vision-Language Model
- **Architecture**: VLV_decoder
- **Language Backbone**: Qwen/Qwen2.5-3B
- **Vision Backbone**: Stable Diffusion + Florence2
- **Training Data**: Various image-caption datasets
- **Framework**: PyTorch, Transformers
## Training Configuration
- **Batch Size**: 1 (inference)
- **Learnable Token Length**: 77
- **Guidance Scale**: 7.5
- **Inference Steps**: 50
- **Beam Search**: 4 beams
## Requirements
```bash
pip install torch transformers safetensors torchvision pillow diffusers
```
## Troubleshooting
### Common Issues and Solutions
#### 1. Meta Tensor Issues
If you encounter meta tensor errors, avoid using `device_map="auto"` when loading the model:
```python
# ❌ Don't use this - can cause meta tensor issues
model = AutoModel.from_pretrained("model-name", device_map="auto")
# ✅ Use this instead
model = AutoModel.from_pretrained("model-name", torch_dtype=torch.float32, low_cpu_mem_usage=True)
if torch.cuda.is_available():
    model = model.to('cuda')
```
#### 2. Cache Issues
If you experience corrupted cache files, clear the cache and redownload:
```python
import shutil
import os
cache_dir = "/your/cache/directory"
cache_path = f"{cache_dir}/modules/transformers_modules/your-username/model-name"
if os.path.exists(cache_path):
    shutil.rmtree(cache_path)
# Then reload with force_download=True
model = AutoModel.from_pretrained("model-name", force_download=True)
```
#### 3. Authentication Issues
Make sure your Hugging Face token is properly set:
```bash
# Option 1: Environment variable
export HUGGINGFACE_TOKEN="your_token_here"
# Option 2: Hugging Face CLI login
huggingface-cli login
```
#### 4. Memory Issues
For large models, use a custom cache directory with sufficient space:
```python
cache_dir = "/path/to/large/storage"
os.makedirs(cache_dir, exist_ok=True)
model = AutoModel.from_pretrained("model-name", cache_dir=cache_dir, low_cpu_mem_usage=True)
```
## Advanced Usage
### Batch Processing with Original Inference Script
For large-scale inference, you can use the original training inference script:
```bash
python Caption_inference.py \
  --input_path /path/to/images \
  --output_path captions.json \
  --clip_decoder_checkpoint /path/to/model.pt \
  --qwen_model Qwen/Qwen2.5-3B \
  --stable_diffusion_model_path stabilityai/stable-diffusion-2-1-base \
  --florence2_model_path microsoft/Florence-2-large \
  --batch_size 4 \
  --max_length 300 \
  --num_beams 4 \
  --image_size 384 \
  --guidance_scale 7.5 \
  --use_text_encoder \
  --distributed  # For multi-GPU inference
```
### Configuration Parameters
- `image_size`: Input image resolution (default: 384)
- `guidance_scale`: Diffusion guidance scale (default: 7.5)  
- `learnable_token_length`: Number of vision tokens (default: 77)
- `max_length`: Maximum caption length (default: 300)
- `num_beams`: Beam search width (default: 4)
- `use_text_encoder`: Enable CLIP text encoder (recommended: True)
```
## Citation
```bibtex
@article{vlv_autoencoder,
  title={Vision-Language-Vision Auto-Encoder: Scalable Knowledge Distillation from Diffusion Models},
  author={Zhang, Tiezheng and Li, Yitong and Chou, Yu-Cheng and Chen, Jieneng and Yuille, Alan L. and Wei, Chen and Xiao, Junfei},
  journal={arXiv preprint},
  year={2024}
}
```
## License
This model is released under the Apache 2.0 license.
 |