|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-v0.3 |
|
model-index: |
|
- name: hc-mistral-7B-v0.3-alpaca-first-100 |
|
results: [] |
|
--- |
|
|
|
# Usage |
|
|
|
You can use this model with the following code: |
|
|
|
First, download the model |
|
|
|
```python |
|
from peft import AutoPeftModelForCausalLM |
|
from transformers import AutoTokenizer |
|
model_id='lawrencewu/hc-mistral-7B-v0.3-alpaca-first-100' |
|
model = AutoPeftModelForCausalLM.from_pretrained(model_id).cuda() |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
``` |
|
|
|
Then, construct the prompt template like so: |
|
|
|
```python |
|
def prompt(nlq, cols): |
|
return f"""Honeycomb is an observability platform that allows you to write queries to inspect trace data. You are an assistant that takes a natural language query (NLQ) and a list of valid columns and produce a Honeycomb query. |
|
|
|
### Instruction: |
|
|
|
NLQ: "{nlq}" |
|
|
|
Columns: {cols} |
|
|
|
### Response: |
|
""" |
|
|
|
def prompt_tok(nlq, cols): |
|
_p = prompt(nlq, cols) |
|
input_ids = tokenizer(_p, return_tensors="pt", truncation=True).input_ids.cuda() |
|
out_ids = model.generate(input_ids=input_ids, max_new_tokens=5000, |
|
do_sample=False) |
|
return tokenizer.batch_decode(out_ids.detach().cpu().numpy(), |
|
skip_special_tokens=True)[0][len(_p):] |
|
``` |
|
|
|
Finally, you can get predictions like this: |
|
|
|
```python |
|
# model inputs |
|
nlq = "Exception count by exception and caller" |
|
cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route'] |
|
|
|
# print prediction |
|
out = prompt_tok(nlq, cols) |
|
print(nlq, '\n', out) |
|
``` |
|
|
|
This will give you a prediction that looks like this: |
|
|
|
```md |
|
"{'breakdowns': ['exception.message', 'exception.type'], 'calculations': [{'op': 'COUNT'}], 'filters': [{'column': 'exception.message', 'op': 'exists'}, {'column': 'exception.type', 'op': 'exists'}], 'orders': [{'op': 'COUNT', 'order': 'descending'}], 'time_range': 7200}" |
|
``` |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: mistralai/Mistral-7B-v0.3 |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
is_mistral_derived_model: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
lora_fan_in_fan_out: false |
|
data_seed: 49 |
|
seed: 49 |
|
|
|
datasets: |
|
- path: data/output_first_100.jsonl |
|
type: sharegpt |
|
conversation: alpaca |
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.1 |
|
output_dir: ./qlora-alpaca-out |
|
hub_model_id: lawrencewu/hc-mistral-7B-v0.3-alpaca-first-100 |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
|
|
sequence_len: 896 |
|
sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
wandb_project: hc-axolotl-mistral |
|
wandb_entity: law |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 16 |
|
eval_batch_size: 16 |
|
num_epochs: 3 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
max_grad_norm: 1.0 |
|
adam_beta2: 0.95 |
|
adam_epsilon: 0.00001 |
|
save_total_limit: 12 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: false |
|
|
|
loss_watchdog_threshold: 5.0 |
|
loss_watchdog_patience: 3 |
|
|
|
warmup_steps: 20 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_table_max_new_tokens: 128 |
|
saves_per_epoch: 6 |
|
debug: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
save_safetensors: true |
|
``` |
|
|
|
</details><br> |
|
|
|
# hc-mistral-7B-v0.3-alpaca-first-100 |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0883 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 49 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 20 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.2291 | 0.6667 | 1 | 1.1299 | |
|
| 1.2111 | 1.3333 | 2 | 1.1216 | |
|
| 1.2203 | 2.0 | 3 | 1.0883 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.2 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |