Image-Text-to-Text
Transformers
TensorBoard
Safetensors
feature-extraction
conversational
custom_code
File size: 6,965 Bytes
9570a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e89ffa
9570a60
660054d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9570a60
 
 
 
 
 
 
9718063
9570a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
license: apache-2.0
datasets:
- lmms-lab/LLaVA-One-Vision-1.5-Insturct-26M
- lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M
base_model:
- Qwen/Qwen3-8B-Base
- DeepGlint-AI/rice-vit-large-patch14-560
---
# LLaVA-OneVision-1.5: Fully Open-Source State-of-the-Art VLM Model

# ✨ Key Features

**LLaVA-OneVision-1.5** introduces a novel family of **fully open-source** Large Multimodal Models (LMMs) that achieves **state-of-the-art performance**  with substantially **lower cost** through training on **native resolution** images.

1. **Superior Performance**
A family of fully open-source large multimodal models demonstrating **superior performance** across multiple multimodal benchmarks, **outperforming Qwen2.5-VL** in most evaluation tasks.

2. **High-Quality Data at Scale**
Meticulously curated **pre-training and SFT data** with rigorous filtering and quality control, achieving **superior data efficiency** with only **5B tokens** (1.2% of Qwen2.5-VL's training data).
- Concept-balanced, highly diverse, high-quality caption data
- Comprehensive instruction fine-tuning data covering a wide range of tasks

3. **Ultra-Efficient Training Framework**
Complete end-to-end training framework designed for maximum efficiency:
- **$16K total budget** for full model training
- **45% HFU efficiency** on A100 GPUs ($0.6 per GPU/Hour)
- Built on **MegatronLM** with support for **MoE**, **FP8**, and **long sequence parallelization**
- Optimized codebase for cost-effective scaling

4. **Fully Open Framework** for community access and reproducibility:
- ✅ High-quality pre-training & SFT data
- ✅ Complete training framework & code
- ✅ Training recipes & configurations
- ✅ Base & instruct model checkpoints
- ✅ Comprehensive training logs & metrics

## Dataset
| Description | Link |
|-------------|------|
| Pretrain data for LLaVA-OneVision-1.5 | [🤗 Download (Uploading!)](https://huggingface.co/datasets/lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M) |
| SFT data for LLaVA-OneVision-1.5 | [🤗 Download (Uploading!)](https://huggingface.co/datasets/lmms-lab/LLaVA-One-Vision-1.5-Insturct-26M) |

## Evaluation Results
All evaluations were conducted using [lmms_eval](https://github.com/EvolvingLMMs-Lab/lmms-eval).

|                                  | **LLaVA-OV-1.5-8B** | **Qwen2.5 VL 7B** |
|:----------------------------------|:---------------:|:-------------:|
| MMMU (Validation)                 |    **55.44**    |     51.33     |
| MMMU-Pro (Standard)               |    **37.40**    |     36.30     |
| MMMU-Pro (Vision)                 |      25.15      |   **32.83**   |
| MMBench (English; Test)           |    **84.14**    |     83.40     |
| MMBench (Chinese; Test)           |      81.00      |   **81.61**   |
| MME-RealWorld (English)           |    **62.31**    |     57.33     |
| MME-RealWorld (Chinese)           |    **56.11**    |     51.50     |
| AI2D (With Mask)                  |    **84.16**    |     82.58     |
| AI2D (Without Mask)               |    **94.11**    |     93.36     |
| CV-Bench                          |    **80.82**    |     79.95     |
| VL-RewardBench                    |      45.90      |   **49.65**   |
| V*                                |    **78.01**    |     76.96     |
| PixmoCount                        |      62.19      |   **63.33**   |
| CountBench                        |    **88.19**    |     86.35     |
| ChartQA                           |    **86.48**    |     84.08     |
| CharXiv (Direct Questions)        |    **74.10**    |     69.80     |
| DocVQA (Test)                     |    **95.00**    |     94.93     |
| InfoVQA (Test)                    |      78.42      |   **81.67**   |
| WeMath                            |    **33.62**    |     33.33     |
| MathVista (Mini)                  |    **69.57**    |     68.60     |
| MathVision                        |    **25.56**    |     22.37     |
| MMStar                            |    **67.72**    |     62.54     |
| SEED-Bench (Image)                |      77.32      |   **77.53**   |
| ScienceQA                         |    **94.98**    |     88.75     |
| SEED-Bench 2-Plus                 |      69.21      |   **70.93**   |
| OCRBench                          |      82.90      |   **84.20**   |
| RealWorldQA                       |      68.10      |   **68.50**   |

### Using 🤗  Transformers to Chat
Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:

```python
from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM
from qwen_vl_utils import process_vision_info
model_path = "lmms-lab/LLaVA-One-Vision-1.5-8B-Instruct"

# default: Load the model on the available device(s)
model = AutoModelForCausalLM.from_pretrained(
    model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True
)

# default processer
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

# Preparation for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```

## Citation

If you find *LLaVA-OneVision-1.5* useful in your research, please consider to cite the following related papers:

```
@inproceedings{LLaVA-OneVision-1.5,
  title={LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training},
  author={},
  booktitle={arxiv},  
  year={2025}
 }

@inproceedings{xie2025region,
  title={Region-based Cluster Discrimination for Visual Representation Learning},
  author={Xie, Yin and Yang, Kaicheng and An, Xiang and Wu, Kun and Zhao, Yongle and Deng, Weimo and Ran, Zimin and Wang, Yumeng and Feng, Ziyong and Miles, Roy and Elezi, Ismail and Deng, Jiankang},
  booktitle={ICCV},
  year={2025}
}

@article{lillava,
  title={LLaVA-OneVision: Easy Visual Task Transfer},
  author={Li, Bo and Zhang, Yuanhan and Guo, Dong and Zhang, Renrui and Li, Feng and Zhang, Hao and Zhang, Kaichen and Zhang, Peiyuan and Li, Yanwei and Liu, Ziwei and Li, Chunyuan},
  journal={Transactions on Machine Learning Research}
  year={2024}
}
```