YAML Metadata
		Warning:
	The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
	
	
		
	
	
		Model Card of lmqg/t5-small-tweetqa-qag
	
This model is fine-tuned version of t5-small for question & answer pair generation task on the lmqg/qag_tweetqa (dataset_name: default) via lmqg.
Overview
- Language model: t5-small
 - Language: en
 - Training data: lmqg/qag_tweetqa (default)
 - Online Demo: https://autoqg.net/
 - Repository: https://github.com/asahi417/lm-question-generation
 - Paper: https://arxiv.org/abs/2210.03992
 
Usage
- With 
lmqg 
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/t5-small-tweetqa-qag")
# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
- With 
transformers 
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/t5-small-tweetqa-qag")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
Evaluation
- Metric (Question & Answer Generation): raw metric file
 
| Score | Type | Dataset | |
|---|---|---|---|
| BERTScore | 89.64 | default | lmqg/qag_tweetqa | 
| Bleu_1 | 35.53 | default | lmqg/qag_tweetqa | 
| Bleu_2 | 22.94 | default | lmqg/qag_tweetqa | 
| Bleu_3 | 15.11 | default | lmqg/qag_tweetqa | 
| Bleu_4 | 10.08 | default | lmqg/qag_tweetqa | 
| METEOR | 28.02 | default | lmqg/qag_tweetqa | 
| MoverScore | 60.47 | default | lmqg/qag_tweetqa | 
| QAAlignedF1Score (BERTScore) | 91.42 | default | lmqg/qag_tweetqa | 
| QAAlignedF1Score (MoverScore) | 63.08 | default | lmqg/qag_tweetqa | 
| QAAlignedPrecision (BERTScore) | 91.89 | default | lmqg/qag_tweetqa | 
| QAAlignedPrecision (MoverScore) | 64.08 | default | lmqg/qag_tweetqa | 
| QAAlignedRecall (BERTScore) | 90.98 | default | lmqg/qag_tweetqa | 
| QAAlignedRecall (MoverScore) | 62.16 | default | lmqg/qag_tweetqa | 
| ROUGE_L | 34.19 | default | lmqg/qag_tweetqa | 
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_tweetqa
 - dataset_name: default
 - input_types: ['paragraph']
 - output_types: ['questions_answers']
 - prefix_types: ['qag']
 - model: t5-small
 - max_length: 256
 - max_length_output: 128
 - epoch: 14
 - batch: 64
 - lr: 0.0001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 1
 - label_smoothing: 0.0
 
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
- Downloads last month
 - 5
 
Dataset used to train lmqg/t5-small-tweetqa-qag
Evaluation results
- BLEU4 (Question & Answer Generation) on lmqg/qag_tweetqaself-reported10.080
 - ROUGE-L (Question & Answer Generation) on lmqg/qag_tweetqaself-reported34.190
 - METEOR (Question & Answer Generation) on lmqg/qag_tweetqaself-reported28.020
 - BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported89.640
 - MoverScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported60.470
 - QAAlignedF1Score-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported91.420
 - QAAlignedRecall-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported90.980
 - QAAlignedPrecision-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported91.890
 - QAAlignedF1Score-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported63.080
 - QAAlignedRecall-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported62.160