YAML Metadata Warning: The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Model Card of lmqg/t5-small-tweetqa-qag

This model is fine-tuned version of t5-small for question & answer pair generation task on the lmqg/qag_tweetqa (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/t5-small-tweetqa-qag")

# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/t5-small-tweetqa-qag")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

Evaluation

Score Type Dataset
BERTScore 89.64 default lmqg/qag_tweetqa
Bleu_1 35.53 default lmqg/qag_tweetqa
Bleu_2 22.94 default lmqg/qag_tweetqa
Bleu_3 15.11 default lmqg/qag_tweetqa
Bleu_4 10.08 default lmqg/qag_tweetqa
METEOR 28.02 default lmqg/qag_tweetqa
MoverScore 60.47 default lmqg/qag_tweetqa
QAAlignedF1Score (BERTScore) 91.42 default lmqg/qag_tweetqa
QAAlignedF1Score (MoverScore) 63.08 default lmqg/qag_tweetqa
QAAlignedPrecision (BERTScore) 91.89 default lmqg/qag_tweetqa
QAAlignedPrecision (MoverScore) 64.08 default lmqg/qag_tweetqa
QAAlignedRecall (BERTScore) 90.98 default lmqg/qag_tweetqa
QAAlignedRecall (MoverScore) 62.16 default lmqg/qag_tweetqa
ROUGE_L 34.19 default lmqg/qag_tweetqa

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_tweetqa
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: ['qag']
  • model: t5-small
  • max_length: 256
  • max_length_output: 128
  • epoch: 14
  • batch: 64
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 1
  • label_smoothing: 0.0

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train lmqg/t5-small-tweetqa-qag

Evaluation results

  • BLEU4 (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    10.080
  • ROUGE-L (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    34.190
  • METEOR (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    28.020
  • BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    89.640
  • MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    60.470
  • QAAlignedF1Score-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    91.420
  • QAAlignedRecall-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    90.980
  • QAAlignedPrecision-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    91.890
  • QAAlignedF1Score-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    63.080
  • QAAlignedRecall-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    62.160