|
--- |
|
license: mit |
|
datasets: |
|
- mahdin70/cwe_enriched_balanced_bigvul_primevul |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
base_model: |
|
- microsoft/codebert-base |
|
library_name: transformers |
|
--- |
|
|
|
|
|
# CodeBERT-VulnCWE - Fine-Tuned CodeBERT for Vulnerability and CWE Classification |
|
|
|
## Model Overview |
|
This model is a fine-tuned version of **microsoft/codebert-base** on a curated and enriched dataset for vulnerability detection and CWE classification. It is capable of predicting whether a given code snippet is vulnerable and, if vulnerable, identifying the specific CWE ID associated with it. |
|
|
|
## Dataset |
|
The model was fine-tuned using the dataset [mahdin70/cwe_enriched_balanced_bigvul_primevul](https://huggingface.co/datasets/mahdin70/cwe_enriched_balanced_bigvul_primevul). The dataset contains both vulnerable and non-vulnerable code samples and is enriched with CWE metadata. |
|
|
|
### CWE IDs Covered: |
|
1. **CWE-119**: Improper Restriction of Operations within the Bounds of a Memory Buffer |
|
2. **CWE-20**: Improper Input Validation |
|
3. **CWE-125**: Out-of-bounds Read |
|
4. **CWE-399**: Resource Management Errors |
|
5. **CWE-200**: Information Exposure |
|
6. **CWE-787**: Out-of-bounds Write |
|
7. **CWE-264**: Permissions, Privileges, and Access Controls |
|
8. **CWE-416**: Use After Free |
|
9. **CWE-476**: NULL Pointer Dereference |
|
10. **CWE-190**: Integer Overflow or Wraparound |
|
11. **CWE-189**: Numeric Errors |
|
12. **CWE-362**: Concurrent Execution using Shared Resource with Improper Synchronization |
|
|
|
--- |
|
|
|
## Model Training |
|
The model was trained for **3 epochs** with the following configuration: |
|
- **Learning Rate**: 2e-5 |
|
- **Weight Decay**: 0.01 |
|
- **Batch Size**: 8 |
|
- **Optimizer**: AdamW |
|
- **Scheduler**: Linear |
|
|
|
### Training Loss and Validation Metrics Per Epoch: |
|
| Epoch | Training Loss | Validation Loss | Vul Accuracy | Vul Precision | Vul Recall | Vul F1 | CWE Accuracy | |
|
|-------|---------------|-----------------|--------------|---------------|------------|--------|--------------| |
|
| 1 | 1.4663 | 1.4988 | 0.7887 | 0.8526 | 0.5498 | 0.6685 | 0.2932 | |
|
| 2 | 1.2107 | 1.3474 | 0.8038 | 0.8493 | 0.6002 | 0.7034 | 0.3688 | |
|
| 3 | 1.1885 | 1.3096 | 0.8034 | 0.8020 | 0.6541 | 0.7205 | 0.3963 | |
|
|
|
#### Training Summary: |
|
- **Total Training Steps**: 2958 |
|
- **Training Loss**: 1.3862 |
|
- **Training Time**: 3058.7 seconds (~51 minutes) |
|
- **Training Speed**: 15.47 samples per second |
|
- **Steps Per Second**: 0.967 |
|
|
|
|
|
## How to Use the Model |
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
model = AutoModel.from_pretrained("mahdin70/CodeBERT-VulnCWE", trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base") |
|
|
|
code_snippet = "int main() { int arr[10]; arr[11] = 5; return 0; }" |
|
inputs = tokenizer(code_snippet, return_tensors="pt") |
|
outputs = model(**inputs) |
|
|
|
vul_logits = outputs["vul_logits"] |
|
cwe_logits = outputs["cwe_logits"] |
|
|
|
vul_pred = vul_logits.argmax(dim=1).item() |
|
cwe_pred = kov_logits.argmax(dim=1).item() |
|
|
|
print(f"Vulnerability: {'Vulnerable' if vul_pred == 1 else 'Non-vulnerable'}") |
|
print(f"CWE ID: {cwe_pred if vul_pred == 1 else 'N/A'}") |
|
``` |
|
|
|
## Limitations and Future Improvements |
|
- The model achieves a CWE classification accuracy of 39.63% on the validation set, indicating significant room for improvement. Advanced architectures, better data balancing, or additional pretraining could enhance performance. |
|
- The model's vulnerability detection F1-score (72.05% on validation) is moderate but could be improved with further tuning or a larger dataset. |
|
- The model may struggle with edge cases or CWEs not well-represented in the training data. |
|
- Test set evaluation metrics are pending. Running the model on the test set will provide a clearer picture of its generalization. |
|
|
|
|
|
## Notes |
|
- Ensure the `trust_remote_code=True` flag is used when loading the model, as it relies on custom code for the `MultiTaskCodeBERT` architecture. |
|
- The model expects input code snippets tokenized using the CodeBERT tokenizer (`microsoft/codebert-base`). |
|
- For best results, preprocess code snippets consistently with the training dataset (e.g., max length of 512 tokens). |
|
|
|
|