petermcaughan's picture
Update README.md
92d47fb
|
raw
history blame
3.01 kB
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
language:
- en
tags:
- mistral
- onnxruntime
- onnx
- llm
---
# Mistral-7b for ONNX Runtime
## Introduction
This repository hosts the optimized versions of **Mistral-7B-v0.1** to accelerate inference with ONNX Runtime CUDA execution provider.
See the [usage instructions](#usage-example) for how to inference this model with the ONNX files hosted in this repository.
## Model Description
- **Developed by:** MistralAI
- **Model type:** Pretrained generative text model
- **License:** Apache 2.0 License
- **Model Description:** This is a conversion of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) for [ONNX Runtime](https://github.com/microsoft/onnxruntime) inference with CUDA execution provider.
## Performance Comparison
#### Latency for token generation
Below is average latency of generating a token using a prompt of varying size using NVIDIA A100-SXM4-80GB GPU, taken from the [ORT benchmarking script for Mistral](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/llama/README.md#benchmark-mistral)
| Prompt Length | Batch Size | PyTorch 2.1 torch.compile | ONNX Runtime CUDA |
|-------------|------------|----------------|-------------------|
| 32 | 1 | 32.58ms | 12.08ms |
| 256 | 1 | 54.54ms | 23.20ms |
| 1024 | 1 | 100.6ms | 77.49ms |
| 2048 | 1 | 236.8ms | 144.99ms |
| 32 | 4 | 63.71ms | 15.32ms |
| 256 | 4 | 86.74ms | 75.94ms |
| 1024 | 4 | 380.2ms | 273.9ms |
| 2048 | 4 | N/A | 554.5ms |
## Usage Example
Following the [benchmarking instructions](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/llama/README.md#mistral). Example steps:
1. Clone onnxruntime repository.
```shell
git clone https://github.com/microsoft/onnxruntime
cd onnxruntime
```
2. Install required dependencies
```shell
python3 -m pip install -r onnxruntime/python/tools/transformers/models/llama/requirements-cuda.txt
```
5. Inference using manual model API, or use Hugging Face's ORTModelForCausalLM
```python
from optimum.onnxruntime import ORTModelForCausalLM
from onnxruntime import InferenceSession
from transformers import AutoConfig, AutoTokenizer
sess = InferenceSession("Mistral-7B-v0.1.onnx", providers = ["CUDAExecutionProvider"])
config = AutoConfig.from_pretrained("mistralai/Mistral-7B-v0.1")
model = ORTModelForCausalLM(sess, config, use_cache = True, use_io_binding = True)
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
inputs = tokenizer("Instruct: What is a fermi paradox?\nOutput:", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```