{ // 获取包含Hugging Face文本的span元素 const spans = link.querySelectorAll('span.whitespace-nowrap, span.hidden.whitespace-nowrap'); spans.forEach(span => { if (span.textContent && span.textContent.trim().match(/Hugging\s*Face/i)) { span.textContent = 'AI快站'; } }); }); // 替换logo图片的alt属性 document.querySelectorAll('img[alt*="Hugging"], img[alt*="Face"]').forEach(img => { if (img.alt.match(/Hugging\s*Face/i)) { img.alt = 'AI快站 logo'; } }); } // 替换导航栏中的链接 function replaceNavigationLinks() { // 已替换标记,防止重复运行 if (window._navLinksReplaced) { return; } // 已经替换过的链接集合,防止重复替换 const replacedLinks = new Set(); // 只在导航栏区域查找和替换链接 const headerArea = document.querySelector('header') || document.querySelector('nav'); if (!headerArea) { return; } // 在导航区域内查找链接 const navLinks = headerArea.querySelectorAll('a'); navLinks.forEach(link => { // 如果已经替换过,跳过 if (replacedLinks.has(link)) return; const linkText = link.textContent.trim(); const linkHref = link.getAttribute('href') || ''; // 替换Spaces链接 - 仅替换一次 if ( (linkHref.includes('/spaces') || linkHref === '/spaces' || linkText === 'Spaces' || linkText.match(/^s*Spacess*$/i)) && linkText !== '免费Z-image图片生成' && linkText !== '免费Z-image图片生成' ) { link.textContent = '免费Z-image图片生成'; link.href = 'https://zimage.run'; link.setAttribute('target', '_blank'); link.setAttribute('rel', 'noopener noreferrer'); replacedLinks.add(link); } // 删除Posts链接 else if ( (linkHref.includes('/posts') || linkHref === '/posts' || linkText === 'Posts' || linkText.match(/^s*Postss*$/i)) ) { if (link.parentNode) { link.parentNode.removeChild(link); } replacedLinks.add(link); } // 替换Docs链接 - 仅替换一次 else if ( (linkHref.includes('/docs') || linkHref === '/docs' || linkText === 'Docs' || linkText.match(/^s*Docss*$/i)) && linkText !== 'Vibevoice' ) { link.textContent = 'Vibevoice'; link.href = 'https://vibevoice.info/'; replacedLinks.add(link); } // 替换Pricing链接 - 仅替换一次 else if ( (linkHref.includes('/pricing') || linkHref === '/pricing' || linkText === 'Pricing' || linkText.match(/^s*Pricings*$/i)) && linkText !== '免费去水印' ) { link.textContent = '免费去水印'; link.href = 'https://sora2watermarkremover.net/'; replacedLinks.add(link); } // 替换Enterprise链接 else if ( (linkHref.includes('/enterprise') || linkHref === '/enterprise' || linkText === 'Enterprise' || linkText.match(/^s*Enterprises*$/i)) && linkText !== 'GitHub加速' ) { link.textContent = 'GitHub加速'; link.href = 'https://githubproxy.cc'; replacedLinks.add(link); } }); // 查找可能嵌套的Spaces和Posts文本 const textNodes = []; function findTextNodes(element) { if (element.nodeType === Node.TEXT_NODE) { const text = element.textContent.trim(); if (text === 'Spaces' || text === 'Posts' || text === 'Enterprise') { textNodes.push(element); } } else { for (const child of element.childNodes) { findTextNodes(child); } } } // 只在导航区域内查找文本节点 findTextNodes(headerArea); // 替换找到的文本节点 textNodes.forEach(node => { const text = node.textContent.trim(); if (text === 'Spaces') { node.textContent = node.textContent.replace(/Spaces/g, '免费Z-image图片生成'); } else if (text === 'Posts') { // 删除Posts文本节点 if (node.parentNode) { node.parentNode.removeChild(node); } } else if (text === 'Enterprise') { // 删除Enterprise文本节点 if (node.parentNode) { node.parentNode.removeChild(node); } } }); // 标记已替换完成 window._navLinksReplaced = true; } // 替换代码区域中的域名 function replaceCodeDomains() { // 特别处理span.hljs-string和span.njs-string元素 document.querySelectorAll('span.hljs-string, span.njs-string, span[class*="hljs-string"], span[class*="njs-string"]').forEach(span => { if (span.textContent && span.textContent.includes('huggingface.co')) { span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } }); // 替换hljs-string类的span中的域名(移除多余的转义符号) document.querySelectorAll('span.hljs-string, span[class*="hljs-string"]').forEach(span => { if (span.textContent && span.textContent.includes('huggingface.co')) { span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } }); // 替换pre和code标签中包含git clone命令的域名 document.querySelectorAll('pre, code').forEach(element => { if (element.textContent && element.textContent.includes('git clone')) { const text = element.innerHTML; if (text.includes('huggingface.co')) { element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com'); } } }); // 处理特定的命令行示例 document.querySelectorAll('pre, code').forEach(element => { const text = element.innerHTML; if (text.includes('huggingface.co')) { // 针对git clone命令的专门处理 if (text.includes('git clone') || text.includes('GIT_LFS_SKIP_SMUDGE=1')) { element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com'); } } }); // 特别处理模型下载页面上的代码片段 document.querySelectorAll('.flex.border-t, .svelte_hydrator, .inline-block').forEach(container => { const content = container.innerHTML; if (content && content.includes('huggingface.co')) { container.innerHTML = content.replace(/huggingface.co/g, 'aifasthub.com'); } }); // 特别处理模型仓库克隆对话框中的代码片段 try { // 查找包含"Clone this model repository"标题的对话框 const cloneDialog = document.querySelector('.svelte_hydration_boundary, [data-target="MainHeader"]'); if (cloneDialog) { // 查找对话框中所有的代码片段和命令示例 const codeElements = cloneDialog.querySelectorAll('pre, code, span'); codeElements.forEach(element => { if (element.textContent && element.textContent.includes('huggingface.co')) { if (element.innerHTML.includes('huggingface.co')) { element.innerHTML = element.innerHTML.replace(/huggingface.co/g, 'aifasthub.com'); } else { element.textContent = element.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } } }); } // 更精确地定位克隆命令中的域名 document.querySelectorAll('[data-target]').forEach(container => { const codeBlocks = container.querySelectorAll('pre, code, span.hljs-string'); codeBlocks.forEach(block => { if (block.textContent && block.textContent.includes('huggingface.co')) { if (block.innerHTML.includes('huggingface.co')) { block.innerHTML = block.innerHTML.replace(/huggingface.co/g, 'aifasthub.com'); } else { block.textContent = block.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } } }); }); } catch (e) { // 错误处理但不打印日志 } } // 当DOM加载完成后执行替换 if (document.readyState === 'loading') { document.addEventListener('DOMContentLoaded', () => { replaceHeaderBranding(); replaceNavigationLinks(); replaceCodeDomains(); // 只在必要时执行替换 - 3秒后再次检查 setTimeout(() => { if (!window._navLinksReplaced) { console.log('[Client] 3秒后重新检查导航链接'); replaceNavigationLinks(); } }, 3000); }); } else { replaceHeaderBranding(); replaceNavigationLinks(); replaceCodeDomains(); // 只在必要时执行替换 - 3秒后再次检查 setTimeout(() => { if (!window._navLinksReplaced) { console.log('[Client] 3秒后重新检查导航链接'); replaceNavigationLinks(); } }, 3000); } // 增加一个MutationObserver来处理可能的动态元素加载 const observer = new MutationObserver(mutations => { // 检查是否导航区域有变化 const hasNavChanges = mutations.some(mutation => { // 检查是否存在header或nav元素变化 return Array.from(mutation.addedNodes).some(node => { if (node.nodeType === Node.ELEMENT_NODE) { // 检查是否是导航元素或其子元素 if (node.tagName === 'HEADER' || node.tagName === 'NAV' || node.querySelector('header, nav')) { return true; } // 检查是否在导航元素内部 let parent = node.parentElement; while (parent) { if (parent.tagName === 'HEADER' || parent.tagName === 'NAV') { return true; } parent = parent.parentElement; } } return false; }); }); // 只在导航区域有变化时执行替换 if (hasNavChanges) { // 重置替换状态,允许再次替换 window._navLinksReplaced = false; replaceHeaderBranding(); replaceNavigationLinks(); } }); // 开始观察document.body的变化,包括子节点 if (document.body) { observer.observe(document.body, { childList: true, subtree: true }); } else { document.addEventListener('DOMContentLoaded', () => { observer.observe(document.body, { childList: true, subtree: true }); }); } })(); \n\n\n","replicas":{"requested":1},"devMode":false,"domains":[{"domain":"patronusai-glider.hf.space","stage":"READY"}]},"shortDescription":"GLIDER: Grading LLM Interactions and Decisions using Explain","title":"GLIDER","isLikedByUser":false,"ai_short_description":"Evaluate text based on pass criteria and rubric","ai_category":"Text Analysis","trendingScore":0,"tags":["gradio","region:us"],"featured":false},"repoId":"PatronusAI/GLIDER","repoType":"space"},{"time":"2024-11-25T16:31:41.525Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","type":"upvote","targetType":"article","target":{"_id":"673f07192108097ae210d6d2","isUpvotedByUser":false,"numCoauthors":1,"publishedAt":"2024-11-21T10:10:33.894Z","slug":"observers-a-lightweight-sdk-for-ai-observability","title":"Introducing Observers: AI Observability with Hugging Face datasets through a lightweight SDK","upvotes":35,"upvotes7d":0,"authorsData":[{"_id":"634ff41ff32062e9eb7b06a3","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/1677141720071-634ff41ff32062e9eb7b06a3.jpeg","fullname":"David Berenstein","name":"davidberenstein1957","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":621}],"url":"/blog/davidberenstein1957/observers-a-lightweight-sdk-for-ai-observability","apiPrefix":"/api/blog/davidberenstein1957/observers-a-lightweight-sdk-for-ai-observability","canonical":false,"status":"published","isHFChangelog":false},"targetUrl":"/blog/davidberenstein1957/observers-a-lightweight-sdk-for-ai-observability"},{"time":"2024-11-10T01:41:49.399Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","orgAvatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/5dd96eb166059660ed1ee413/WtA3YYitedOr9n02eHfJe.png","type":"like","repoData":{"author":"google","authorData":{"_id":"5e6aca39878b8b2bf9806447","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/5dd96eb166059660ed1ee413/WtA3YYitedOr9n02eHfJe.png","fullname":"Google","name":"google","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"isEnterprise":true,"plan":"enterprise","followerCount":41002},"downloads":642686,"gated":false,"id":"google/flan-t5-base","availableInferenceProviders":[],"lastModified":"2023-07-17T12:48:39.000Z","likes":1035,"private":false,"repoType":"model","isLikedByUser":false,"widgetOutputUrls":[],"numParameters":247577856},"repoId":"google/flan-t5-base","repoType":"model"},{"time":"2024-10-26T12:26:14.263Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","orgAvatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/1583646260758-5e64858c87403103f9f1055d.png","type":"like","repoData":{"author":"microsoft","authorData":{"_id":"5e6485f787403103f9f1055e","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/1583646260758-5e64858c87403103f9f1055d.png","fullname":"Microsoft","name":"microsoft","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"isEnterprise":true,"plan":"enterprise","followerCount":17557},"downloads":327,"gated":false,"id":"microsoft/OmniParser","availableInferenceProviders":[],"lastModified":"2024-12-02T17:47:28.000Z","likes":1699,"pipeline_tag":"image-text-to-text","private":false,"repoType":"model","isLikedByUser":false},"repoId":"microsoft/OmniParser","repoType":"model"},{"time":"2024-10-24T16:13:54.653Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","orgAvatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/60270a7c32856987162c641a/umd13GCWVijwTDGZzw3q-.png","type":"like","repoData":{"author":"sarvamai","authorData":{"_id":"6577b0807ee8616c7cfa853f","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/60270a7c32856987162c641a/umd13GCWVijwTDGZzw3q-.png","fullname":"Sarvam AI","name":"sarvamai","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"isEnterprise":false,"followerCount":788},"downloads":2243,"gated":false,"id":"sarvamai/sarvam-1","availableInferenceProviders":[],"lastModified":"2024-11-08T10:20:34.000Z","likes":108,"pipeline_tag":"text-generation","private":false,"repoType":"model","isLikedByUser":false,"numParameters":2525087744},"repoId":"sarvamai/sarvam-1","repoType":"model"},{"time":"2024-09-24T16:03:16.561Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","orgAvatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/1592839207516-noauth.png","type":"like","repoData":{"author":"facebook","authorData":{"_id":"5e63d8713071d5be688861b8","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/1592839207516-noauth.png","fullname":"AI at Meta","name":"facebook","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"isEnterprise":true,"plan":"enterprise","followerCount":10455},"downloads":3662070,"gated":false,"id":"facebook/bart-large-mnli","availableInferenceProviders":[{"provider":"hf-inference","modelStatus":"live","providerStatus":"live","providerId":"facebook/bart-large-mnli","task":"zero-shot-classification","adapterWeightsPath":"model.safetensors","isCheapestPricingOutput":false,"isFastestThroughput":false,"isModelAuthor":false}],"lastModified":"2023-09-05T14:49:34.000Z","likes":1507,"pipeline_tag":"zero-shot-classification","private":false,"repoType":"model","isLikedByUser":false,"widgetOutputUrls":[],"numParameters":407344133},"repoId":"facebook/bart-large-mnli","repoType":"model"},{"time":"2024-09-11T16:20:46.000Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","type":"upvote","targetType":"paper","target":{"id":"2409.06666","title":"LLaMA-Omni: Seamless Speech Interaction with Large Language Models","thumbnailUrl":"https://cdn-thumbnails.huggingface.co/social-thumbnails/papers/2409.06666.png","upvotes":60,"publishedAt":"2024-09-10T17:34:34.000Z","isUpvotedByUser":true},"targetUrl":"/papers/2409.06666"},{"time":"2024-09-10T15:49:48.000Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","type":"upvote","targetType":"paper","target":{"id":"2303.01432","title":"WiCE: Real-World Entailment for Claims in Wikipedia","thumbnailUrl":"https://cdn-thumbnails.huggingface.co/social-thumbnails/papers/2303.01432.png","upvotes":2,"publishedAt":"2023-03-02T17:45:32.000Z","isUpvotedByUser":true},"targetUrl":"/papers/2303.01432"},{"time":"2024-08-18T10:58:05.457Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","orgAvatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/60270a7c32856987162c641a/umd13GCWVijwTDGZzw3q-.png","type":"like","repoData":{"author":"sarvamai","authorData":{"_id":"6577b0807ee8616c7cfa853f","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/60270a7c32856987162c641a/umd13GCWVijwTDGZzw3q-.png","fullname":"Sarvam AI","name":"sarvamai","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"isEnterprise":false,"followerCount":788},"downloads":310,"gated":false,"id":"sarvamai/shuka-1","availableInferenceProviders":[],"lastModified":"2025-03-14T15:56:31.000Z","likes":76,"pipeline_tag":"audio-text-to-text","private":false,"repoType":"model","isLikedByUser":false,"numParameters":8725780480},"repoId":"sarvamai/shuka-1","repoType":"model"},{"time":"2024-06-25T14:57:35.687Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","orgAvatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/1664511063789-632c234f42c386ebd2710434.png","type":"like","repoData":{"author":"BAAI","authorData":{"_id":"61be9739d2f9358e24ca0a4f","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/1664511063789-632c234f42c386ebd2710434.png","fullname":"Beijing Academy of Artificial Intelligence","name":"BAAI","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"isEnterprise":false,"followerCount":3168},"downloads":7508400,"gated":false,"id":"BAAI/bge-m3","availableInferenceProviders":[{"provider":"hf-inference","modelStatus":"live","providerStatus":"live","providerId":"BAAI/bge-m3","task":"sentence-similarity","isCheapestPricingOutput":false,"isFastestThroughput":false,"isModelAuthor":false}],"lastModified":"2024-07-03T14:50:10.000Z","likes":2629,"pipeline_tag":"sentence-similarity","private":false,"repoType":"model","isLikedByUser":false,"widgetOutputUrls":[]},"repoId":"BAAI/bge-m3","repoType":"model"},{"time":"2024-03-15T01:44:01.772Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","type":"social-post-reaction","socialPost":{"slug":"695838392164690","content":[{"type":"text","value":"Huggingface is carrying the AI open source ecosystem ","raw":"Huggingface is carrying the AI open source ecosystem "},{"type":"link","href":"https://huyenchip.com/2024/03/14/ai-oss.html","raw":"https://huyenchip.com/2024/03/14/ai-oss.html"}],"rawContent":"Huggingface is carrying the AI open source ecosystem https://huyenchip.com/2024/03/14/ai-oss.html","author":{"_id":"6011db60aa32e5620759af6d","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/6011db60aa32e5620759af6d/sjrkUXJA_EZAtxtdAhkJR.jpeg","fullname":"Chip Huyen","name":"chiphuyen","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":116,"isFollowing":false},"attachments":[{"type":"image","url":"https://cdn-uploads.huggingface.co/production/uploads/6011db60aa32e5620759af6d/UcboK-zhJdQt_qZtoND1v.png"}],"mentions":[],"reactions":[{"reaction":"🚀","users":["osanseviero","samusenps","nikilpatel94","julien-c","lewtun","lvwerra","merve","loubnabnl","AdinaY","joaogante","hanguyen146","RaushanTurganbay","thomwolf","andrewrreed","xianbao","nezubn","ajibawa-2023","beberik","pcuenq","LucienL","michaelbenayoun","rafaelpierrehf","Srulikbd"],"count":23},{"reaction":"❤️","users":["osanseviero","Zyn123","lewtun","merve","AdinaY","joaogante","RaushanTurganbay","thomwolf","andrewrreed","sayakpaul","xianbao","evdcush","pcuenq","LucienL","michaelbenayoun","rafaelpierrehf","jeffboudier","Bkarine"],"count":18},{"reaction":"🤗","users":["osanseviero","kramp","lewtun","merve","loubnabnl","AdinaY","RaushanTurganbay","thomwolf","andrewrreed","LucienL","michaelbenayoun","rafaelpierrehf","jeffboudier"],"count":13}],"publishedAt":"2024-03-14T22:02:04.000Z","updatedAt":"2024-03-15T14:54:46.722Z","commentators":[{"_id":"6032802e1f993496bc14d9e3","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png","fullname":"Omar Sanseviero","name":"osanseviero","type":"user","isPro":false,"isHf":false,"isHfAdmin":true,"isMod":false,"followerCount":3343,"isFollowing":false},{"_id":"5dd96eb166059660ed1ee413","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/5dd96eb166059660ed1ee413/NQtzmrDdbG0H8qkZvRyGk.jpeg","fullname":"Julien Chaumond","name":"julien-c","type":"user","isPro":true,"isHf":true,"isHfAdmin":true,"isMod":false,"followerCount":3777,"isFollowing":false},{"_id":"61b85ce86eb1f2c5e6233736","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/1655385361868-61b85ce86eb1f2c5e6233736.jpeg","fullname":"Vaibhav Srivastav","name":"reach-vb","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":1971,"isFollowing":false},{"_id":"63a369d98c0c89dcae3b8329","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/63a369d98c0c89dcae3b8329/AiH2zjy1cnt9OADAAZMLD.jpeg","fullname":"Adina Yakefu","name":"AdinaY","type":"user","isPro":false,"isHf":true,"isHfAdmin":false,"isMod":false,"followerCount":1146,"isFollowing":false}],"url":"/posts/chiphuyen/695838392164690","totalUniqueImpressions":819,"numComments":4},"reaction":"🚀"},{"time":"2024-03-07T18:20:42.000Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","type":"upvote","targetType":"paper","target":{"id":"2403.03507","title":"GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection","thumbnailUrl":"https://cdn-thumbnails.huggingface.co/social-thumbnails/papers/2403.03507.png","upvotes":189,"publishedAt":"2024-03-06T07:29:57.000Z","isUpvotedByUser":true},"targetUrl":"/papers/2403.03507"},{"time":"2024-02-26T11:31:48.000Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","type":"upvote","targetType":"paper","target":{"id":"2402.14905","title":"MobileLLM: Optimizing Sub-billion Parameter Language Models for\n On-Device Use Cases","thumbnailUrl":"https://cdn-thumbnails.huggingface.co/social-thumbnails/papers/2402.14905.png","upvotes":134,"publishedAt":"2024-02-22T18:58:55.000Z","isUpvotedByUser":true},"targetUrl":"/papers/2402.14905"},{"time":"2024-02-21T12:30:31.688Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","orgAvatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/60270a7c32856987162c641a/umd13GCWVijwTDGZzw3q-.png","type":"like","repoData":{"author":"sarvamai","downloads":63,"gated":false,"id":"sarvamai/samvaad-hi-v1","lastModified":"2024-07-16T06:35:20.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":101476,"libraries":["datasets","pandas","mlcroissant","polars"],"formats":["parquet"],"modalities":["text"]},"private":false,"repoType":"dataset","likes":64,"isLikedByUser":false,"isBenchmark":false},"repoId":"sarvamai/samvaad-hi-v1","repoType":"dataset"}],"activityType":"all","lastUserActivities":[{"time":"2025-11-03T15:45:42.174Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","orgAvatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/651e96991b97c9f33d26bde6/e4VK7uW5sTeCYupD0s_ob.png","type":"like","repoData":{"author":"HuggingFaceTB","authorData":{"_id":"65116f902408819fa5329c6f","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/651e96991b97c9f33d26bde6/e4VK7uW5sTeCYupD0s_ob.png","fullname":"Hugging Face Smol Models Research","name":"HuggingFaceTB","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"isEnterprise":true,"plan":"team","followerCount":3174},"colorFrom":"blue","colorTo":"indigo","createdAt":"2025-09-12T15:07:42.000Z","emoji":"📚","id":"HuggingFaceTB/smol-training-playbook","lastModified":"2025-11-12T13:59:57.000Z","likes":2785,"pinned":false,"private":false,"sdk":"docker","repoType":"space","runtime":{"stage":"RUNNING","hardware":{"current":"cpu-upgrade","requested":"cpu-upgrade"},"storage":null,"gcTimeout":172800,"replicas":{"current":10,"requested":10},"devMode":false,"domains":[{"domain":"loubnabnl-smolllm-blog-draft.hf.space","stage":"READY"},{"domain":"huggingfacetb-smolllm-blog-draft.hf.space","stage":"READY"},{"domain":"huggingfacetb-smol-training-guide.hf.space","stage":"READY"},{"domain":"huggingfacetb-smol-training-playbook.hf.space","stage":"READY"}],"sha":"720710b13852c7bbd51e6b33be9c2dc959e2907c"},"shortDescription":"The secrets to building world-class LLMs","title":"The Smol Training Playbook","isLikedByUser":false,"originRepo":{"name":"tfrere/research-article-template","author":{"_id":"64cb7fdb9e30a46f7b92aa45","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/64cb7fdb9e30a46f7b92aa45/TKaRtn_-R_W__QY8DsQv3.jpeg","fullname":"frere thibaud","name":"tfrere","type":"user","isPro":true,"isHf":true,"isHfAdmin":false,"isMod":false,"followerCount":98}},"ai_short_description":"Read and explore the secrets to building world-class LLMs","ai_category":"Text Analysis","trendingScore":82,"tags":["docker","research-article-template","research paper","scientific paper","data visualization","region:us"],"featured":true},"repoId":"HuggingFaceTB/smol-training-playbook","repoType":"space"},{"time":"2025-10-27T13:41:51.545Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","type":"upvote","targetType":"article","target":{"_id":"68c8dd2f116479c57df4aef1","isUpvotedByUser":false,"numCoauthors":0,"publishedAt":"2025-09-16T03:44:52.716Z","slug":"deepresearch-survey","title":"In-Depth Analysis of the Latest Deep Research Technology: Cutting-Edge Architecture, Core Technologies, and Future Prospects","upvotes":4,"upvotes7d":0,"authorsData":[{"_id":"687f306cce425fc5d3e6f5c7","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/687f306cce425fc5d3e6f5c7/jeMzeWHoYmX6e97RMjPnH.png","fullname":"Exploding Gradients","name":"exploding-gradients","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":12}],"url":"/blog/exploding-gradients/deepresearch-survey","apiPrefix":"/api/blog/exploding-gradients/deepresearch-survey","canonical":false,"status":"published","isHFChangelog":false},"targetUrl":"/blog/exploding-gradients/deepresearch-survey"},{"time":"2025-06-30T13:44:43.712Z","user":"nikilpatel94","userAvatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","type":"upvote","targetType":"article","target":{"_id":"686177b4bf160be6a4f7321a","isUpvotedByUser":false,"numCoauthors":0,"publishedAt":"2025-06-30T05:06:38.057Z","slug":"teaching-data-literacy-to-kids-with-hugging-faces","title":"Teaching Data Literacy with Hugging Face's AI Sheets","upvotes":23,"upvotes7d":0,"authorsData":[{"_id":"60c8351eb935f5a38b2eaf65","avatarUrl":"https://aifasthub.com/avatars/v1/production/uploads/60c8351eb935f5a38b2eaf65/S0oeerwpyYDehGQOodlOx.jpeg","fullname":"Parul Pandey","name":"ParulPandey","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":34}],"url":"/blog/ParulPandey/teaching-data-literacy-to-kids-with-hugging-faces","apiPrefix":"/api/blog/ParulPandey/teaching-data-literacy-to-kids-with-hugging-faces","canonical":false,"status":"published","isHFChangelog":false},"targetUrl":"/blog/ParulPandey/teaching-data-literacy-to-kids-with-hugging-faces"}],"blogPosts":[],"totalBlogPosts":0,"canReadDatabase":false,"canManageEntities":false,"canReadEntities":false,"canImpersonate":false,"canManageBilling":false,"canReadRepos":false,"canReadSpaces":false,"communityScore":1,"collections":[],"datasets":[],"activityCursor":"eyJjcmVhdGVkQXQiOiIyMDI0LTAyLTIxVDEyOjMwOjMxLjY4OFoifQ==","models":[],"numberLikes":12,"papers":[],"posts":[],"totalPosts":0,"spaces":[],"u":{"avatarUrl":"/avatars/31f8d5a88a8469da13478a9379f597f5.svg","isPro":false,"fullname":"N P","user":"nikilpatel94","orgs":[],"signup":{},"isHf":false,"isMod":false,"type":"user","theme":"light"},"upvotes":8,"numFollowers":0,"numFollowingUsers":2,"numFollowingOrgs":6,"numModels":0,"numDatasets":0,"numSpaces":0,"isFollowing":false,"isFollower":false,"sampleFollowers":[],"isWatching":false,"isIgnored":false,"acceptLanguages":["*"],"filters":{},"currentRepoPage":0}">

N P

nikilpatel94
·

AI & ML interests

None yet

Recent Activity

Organizations

None yet