NILC Portuguese Word Embeddings — FastText Skip-Gram 600d
Pretrained static word embeddings for Portuguese (Brazilian + European), trained by the NILC group on a large multi-genre corpus (~1.39B tokens, 17 sources).
This repository contains the FastText Skip-Gram 600d model in safetensors format.
📂 Files
embeddings.safetensors
→ word vectors ([vocab_size, 600]
)vocab.txt
→ vocabulary (one token per line, aligned with rows)
🚀 Usage
from safetensors.numpy import load_file
data = load_file("embeddings.safetensors")
vectors = data["embeddings"]
with open("vocab.txt") as f:
vocab = [w.strip() for w in f]
word2idx = {w: i for i, w in enumerate(vocab)}
print(vectors[word2idx["rei"]]) # vector for "rei"
Or in PyTorch:
from safetensors.torch import load_file
tensors = load_file("embeddings.safetensors")
vectors = tensors["embeddings"] # torch.Tensor
📖 Reference
@inproceedings{hartmann-etal-2017-portuguese,
title = {{P}ortuguese Word Embeddings: Evaluating on Word Analogies and Natural Language Tasks},
author = {Hartmann, Nathan and Fonseca, Erick and Shulby, Christopher and Treviso, Marcos and Silva, J{'e}ssica and Alu{'i}sio, Sandra},
year = 2017,
month = oct,
booktitle = {Proceedings of the 11th {B}razilian Symposium in Information and Human Language Technology},
publisher = {Sociedade Brasileira de Computa{\c{c}}{\~a}o},
address = {Uberl{\^a}ndia, Brazil},
pages = {122--131},
url = {https://aclanthology.org/W17-6615/},
editor = {Paetzold, Gustavo Henrique and Pinheiro, Vl{'a}dia}
}
📜 License
Creative Commons Attribution 4.0 International (CC BY 4.0)