pranjalsingh's picture
Update README.md
9d8dbf8 verified
---
base_model: meta-llama/Llama-3.3-70B-Instruct
library_name: peft
license: mit
datasets:
- tatsu-lab/alpaca
language:
- en
- hi
- ja
- ta
- te
- mr
tags:
- llm
- text-to-text
- text-generation-inference
- converstional
- llama70b
- lora
- adapters
---
# 🧠 Model Card: `pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat`
A LoRA fine-tuned version of the **meta-llama/Llama-3.1-70B-Instruct** model on the **Alpaca dataset**, optimized using **PEFT** and accelerated on **Intel Gaudi3 HPU** hardware.
---
## 📝 Model Summary
This model is a fine-tuned variant of LLaMA 3.1 70B Instruct, trained on the Alpaca dataset using Parameter-Efficient Fine-Tuning (PEFT) via LoRA. The goal of this fine-tuning was to improve instruction-following performance on lightweight resources, leveraging Intel’s Gaudi3 HPU for efficient training.
---
## 📄 Model Details
* **Base Model:** `meta-llama/Llama-3.1-70B-Instruct`
* **Fine-tuned Model:** `pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat`
* **Fine-tuned By:** *Pranjal Singh Thakur*
* **Dataset:** Stanford Alpaca dataset
* **PEFT Library:** PEFT v0.12.0
* **Fine-tuning Technique:** LoRA
* **Epochs:** 2
* **Training Hardware:** 1 Node with 8× Intel Gaudi3 HPUs
* **Language(s):** English
* **License:** Same as base model (LLaMA 3)
* **Credit:** Intel for providing Gaudi3 HPU infrastructure
---
## 🚀 Usage
### Direct Use
Use the model as an instruction-following chatbot or in downstream applications requiring LLM completion with lightweight deployment using LoRA adapters.
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-70B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-70B-Instruct")
model = PeftModel.from_pretrained(base_model, "pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat")
inputs = tokenizer("### Instruction: Explain quantum computing in simple terms.", return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
---
## 📊 Evaluation Results
| Metric | Value |
| ---------------------- | --------- |
| Eval Accuracy | 73.27% |
| Eval Loss | 1.02 |
| Perplexity | 2.79 |
| Evaluation Runtime | 20.97s |
| Samples Evaluated | 101 |
| Samples/Sec | 4.82 |
| Max Memory Used (GB) | 126.2 |
| Total Available Memory | 126.54 GB |
| Memory Allocated (GB) | 41.06 |
---
## 🛠 Training Configuration
* **Epochs:** 2
* **Precision:** Likely mixed precision (bf16/fp16 on Gaudi3)
* **Hardware:** Intel Gaudi3 HPU (8 cards, 1 node)
* **Frameworks:** PEFT, Hugging Face Transformers
* **Batching & Tokenization:** Not explicitly provided
---
## 📦 Model Sources
* **Repository:** [Hugging Face Model Card](https://huggingface.co/pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat)
* **Dataset:** [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
* **Base Model:** [`meta-llama/Llama-3.1-70B-Instruct`](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct)
---
## ⚠️ Limitations & Risks
* Not suitable for multilingual tasks (trained only on English data).
* May reflect biases present in the Alpaca dataset.
* Not recommended for sensitive or safety-critical applications.
* Fine-tuning was conducted for instruction tasks — may not generalize to other domains.
---
## ♻️ Environmental Impact
| Parameter | Value |
| ----------------- | ----------------------------------------------------------- |
| Compute Platform | Intel Gaudi3 |
| Cards Used | 8× HPU |
| Training Duration | \~2 Epochs |
| Region | \[More info needed] |
| Emission Estimate | \[Use [MLCO2](https://mlco2.github.io/impact) to calculate] |
---
## 👨‍💻 Author & Acknowledgment
* **Author:** Pranjal Singh Thakur
* **Credit:** Intel (for compute resources using Gaudi3 HPU)
---
## 🔖 Citation
Coming soon.