prithivMLmods's picture
Update README.md
86db9a2 verified
|
raw
history blame
5.36 kB
---
license: apache-2.0
datasets:
- linxy/LaTeX_OCR
- prithivMLmods/Img2Text-Plaintext-Retrieval
- prithivMLmods/Img2Text-Algorithm-Retrieval
- unsloth/LaTeX_OCR
- mychen76/invoices-and-receipts_ocr_v1
language:
- en
base_model:
- Qwen/Qwen2-VL-2B-Instruct
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- OCR
- KIE
- Key Information Extraction
- Messy Handwriting Recognition
- text-generation-inference
- VLM
- Callisto
- OCR#3
- RAG
- 2B
---
![xfghnbfgt.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/dblNhOatHlsLemn1Yt_zo.png)
# **Callisto-OCR3-2B-Instruct**
> [!Note]
> The **Callisto-OCR3-2B-Instruct** model is a fine-tuned version of *Qwen2-VL-2B-Instruct*, specifically optimized for *messy handwriting recognition*, *Optical Character Recognition (OCR)*, *English language understanding*, and *math problem solving with LaTeX formatting*. This model integrates a conversational approach with visual and textual understanding to handle multi-modal tasks effectively.
[![Open Demo in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://huggingface.co/prithivMLmods/Callisto-OCR3-2B-Instruct/blob/main/Callisto-OCR3-2B-Instruct-Demo/Callisto_OCR3_2B_Instruct.ipynb)
#### Key Enhancements:
* **SoTA understanding of images of various resolution & ratio**: Callisto-OCR3 achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc.
* **Enhanced Handwriting OCR**: Optimized for recognizing and interpreting **messy handwriting** with high accuracy, making it ideal for digitizing handwritten documents and notes.
* **Understanding videos of 20min+**: Callisto-OCR3 can process long videos, enabling high-quality video-based question answering, transcription, and content generation.
* **Agent that can operate your mobiles, robots, etc.**: With advanced reasoning and decision-making, Callisto-OCR3 can be integrated with mobile phones, robots, and other devices to perform automated tasks based on visual and textual input.
* **Multilingual Support**: Besides English and Chinese, Callisto-OCR3 supports text recognition inside images in multiple languages, including European languages, Japanese, Korean, Arabic, and Vietnamese.
### How to Use
```python
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"prithivMLmods/Callisto-OCR3-2B-Instruct", torch_dtype="auto", device_map="auto"
)
# Enable flash_attention_2 for better acceleration and memory optimization
# model = Qwen2VLForConditionalGeneration.from_pretrained(
# "prithivMLmods/Callisto-OCR3-2B-Instruct",
# torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
# Default processor
processor = AutoProcessor.from_pretrained("prithivMLmods/Callisto-OCR3-2B-Instruct")
# Customize visual token range for speed-memory balance
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Recognize the handwriting in this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generate the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
### Buffering Output
```python
buffer = ""
for new_text in streamer:
buffer += new_text
# Remove <|im_end|> or similar tokens from the output
buffer = buffer.replace("<|im_end|>", "")
yield buffer
```
### **Key Features**
1. **Advanced Handwriting OCR:**
- Excels at recognizing and transcribing **messy and cursive handwriting** into digital text with high accuracy.
2. **Vision-Language Integration:**
- Combines **image understanding** with **natural language processing** to convert images into text.
3. **Optical Character Recognition (OCR):**
- Extracts and processes textual information from images with precision.
4. **Math and LaTeX Support:**
- Solves math problems and outputs equations in **LaTeX format**.
5. **Conversational Capabilities:**
- Designed to handle **multi-turn interactions**, providing context-aware responses.
6. **Image-Text-to-Text Generation:**
- Inputs can include **images, text, or a combination**, and the model generates descriptive or problem-solving text.