metadata
license: apache-2.0
datasets:
- Salesforce/wikitext
language:
- en
base_model:
- openai-community/gpt2
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
pip install transformers
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
# Loading pre-trained GPT-2 model and tokenizer
model_name = "prithivMLmods/Gpt2-Wikitext-9180"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
# Set the model to evaluation mode
model.eval()
def generate_text(prompt, max_length=100, temperature=0.8, top_k=50):
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(
input_ids,
max_length=max_length,
temperature=temperature,
top_k=top_k,
pad_token_id=tokenizer.eos_token_id,
do_sample=True
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
# Example prompt
prompt = "Once upon a time"
generated_text = generate_text(prompt, max_length=68)
# Print the generated text
print(generated_text)