SigLIP2 05102025
					Collection
				
Moderation, Balance, Classifiers
					• 
				9 items
				• 
				Updated
					
				•
					
					3
Realistic-Gender-Classification is a binary image classification model based on
google/siglip2-base-patch16-224, designed to classify gender from realistic human portrait images. It can be used in demographic analysis, personalization systems, and automated tagging in large-scale image datasets.
SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features https://arxiv.org/pdf/2502.14786
Classification Report:
                 precision    recall  f1-score   support
female portrait     0.9754    0.9656    0.9705      1600
  male portrait     0.9660    0.9756    0.9708      1600
       accuracy                         0.9706      3200
      macro avg     0.9707    0.9706    0.9706      3200
   weighted avg     0.9707    0.9706    0.9706      3200
The model distinguishes between the following portrait gender categories:
0: female portrait  
1: male portrait
pip install transformers torch pillow gradio
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Realistic-Gender-Classification"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# ID to label mapping
id2label = {
    "0": "female portrait",
    "1": "male portrait"
}
def classify_gender(image):
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
    prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
    return prediction
# Gradio Interface
iface = gr.Interface(
    fn=classify_gender,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Label(num_top_classes=2, label="Gender Classification"),
    title="Realistic-Gender-Classification",
    description="Upload a realistic portrait image to classify it as 'female portrait' or 'male portrait'."
)
if __name__ == "__main__":
    iface.launch()
female portrait
male portrait
Base model
google/siglip2-base-patch16-224