rahulseetharaman commited on
Commit
4f364b3
·
verified ·
1 Parent(s): 651bf71

Add new CrossEncoder model

Browse files
Files changed (6) hide show
  1. README.md +733 -0
  2. config.json +57 -0
  3. model.safetensors +3 -0
  4. special_tokens_map.json +37 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +945 -0
README.md ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - cross-encoder
7
+ - reranker
8
+ - generated_from_trainer
9
+ - dataset_size:78704
10
+ - loss:ListNetLoss
11
+ base_model: jhu-clsp/ettin-encoder-400m
12
+ datasets:
13
+ - microsoft/ms_marco
14
+ pipeline_tag: text-ranking
15
+ library_name: sentence-transformers
16
+ metrics:
17
+ - map
18
+ - mrr@10
19
+ - ndcg@10
20
+ model-index:
21
+ - name: CrossEncoder based on jhu-clsp/ettin-encoder-400m
22
+ results:
23
+ - task:
24
+ type: cross-encoder-reranking
25
+ name: Cross Encoder Reranking
26
+ dataset:
27
+ name: NanoMSMARCO R100
28
+ type: NanoMSMARCO_R100
29
+ metrics:
30
+ - type: map
31
+ value: 0.5555
32
+ name: Map
33
+ - type: mrr@10
34
+ value: 0.544
35
+ name: Mrr@10
36
+ - type: ndcg@10
37
+ value: 0.6012
38
+ name: Ndcg@10
39
+ - task:
40
+ type: cross-encoder-reranking
41
+ name: Cross Encoder Reranking
42
+ dataset:
43
+ name: NanoNFCorpus R100
44
+ type: NanoNFCorpus_R100
45
+ metrics:
46
+ - type: map
47
+ value: 0.3715
48
+ name: Map
49
+ - type: mrr@10
50
+ value: 0.584
51
+ name: Mrr@10
52
+ - type: ndcg@10
53
+ value: 0.4065
54
+ name: Ndcg@10
55
+ - task:
56
+ type: cross-encoder-reranking
57
+ name: Cross Encoder Reranking
58
+ dataset:
59
+ name: NanoNQ R100
60
+ type: NanoNQ_R100
61
+ metrics:
62
+ - type: map
63
+ value: 0.6598
64
+ name: Map
65
+ - type: mrr@10
66
+ value: 0.683
67
+ name: Mrr@10
68
+ - type: ndcg@10
69
+ value: 0.7061
70
+ name: Ndcg@10
71
+ - task:
72
+ type: cross-encoder-nano-beir
73
+ name: Cross Encoder Nano BEIR
74
+ dataset:
75
+ name: NanoBEIR R100 mean
76
+ type: NanoBEIR_R100_mean
77
+ metrics:
78
+ - type: map
79
+ value: 0.5289
80
+ name: Map
81
+ - type: mrr@10
82
+ value: 0.6037
83
+ name: Mrr@10
84
+ - type: ndcg@10
85
+ value: 0.5713
86
+ name: Ndcg@10
87
+ ---
88
+
89
+ # CrossEncoder based on jhu-clsp/ettin-encoder-400m
90
+
91
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [jhu-clsp/ettin-encoder-400m](https://huggingface.co/jhu-clsp/ettin-encoder-400m) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
92
+
93
+ ## Model Details
94
+
95
+ ### Model Description
96
+ - **Model Type:** Cross Encoder
97
+ - **Base model:** [jhu-clsp/ettin-encoder-400m](https://huggingface.co/jhu-clsp/ettin-encoder-400m) <!-- at revision 7662476d60abb071a5bd319c9f3074f3072c062d -->
98
+ - **Maximum Sequence Length:** 7999 tokens
99
+ - **Number of Output Labels:** 1 label
100
+ - **Training Dataset:**
101
+ - [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
102
+ - **Language:** en
103
+ <!-- - **License:** Unknown -->
104
+
105
+ ### Model Sources
106
+
107
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
108
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
109
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
110
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
111
+
112
+ ## Usage
113
+
114
+ ### Direct Usage (Sentence Transformers)
115
+
116
+ First install the Sentence Transformers library:
117
+
118
+ ```bash
119
+ pip install -U sentence-transformers
120
+ ```
121
+
122
+ Then you can load this model and run inference.
123
+ ```python
124
+ from sentence_transformers import CrossEncoder
125
+
126
+ # Download from the 🤗 Hub
127
+ model = CrossEncoder("rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-400m-listnet")
128
+ # Get scores for pairs of texts
129
+ pairs = [
130
+ ['what is the salary of an animal shelter manager', 'Average Animal Shelter Salaries. The average salary for animal shelter jobs is $50,000. Average animal shelter salaries can vary greatly due to company, location, industry, experience and benefits. This salary was calculated using the average salary for all jobs with the term animal shelter anywhere in the job listing.'],
131
+ ['what is the salary of an animal shelter manager', 'The salary that an animal shelter manager earns can vary based on a variety of factors such as their specific responsibilities, their years of experience, their educational background, and the region in which the position is located. Most animal shelter manager positions do not carry particularly high salaries, but those who follow animal rescue career paths tend to be willing to sacrifice some earning potential for the prospect of being able to help animals in need.'],
132
+ ['what is the salary of an animal shelter manager', 'Animal shelter managers’ salaries vary depending on their state and location. For example, the Midwest sits at the bottom of the list. Based on the May, 2010 Pay Scale survey, Illinois managers made $35,382, while the average Californian animal shelter manager earned $55,224. Size. The size of animal shelter also correlates to the manager’s salary. The more animals, the more employees, the more responsibility for the manager. In May, 2010, animal shelter managers working in a shelter employing 1 to 9 people, earned $33,835 on average.'],
133
+ ['what is the salary of an animal shelter manager', 'Salary by Region. Salaries for animal shelter managers also vary by region. According to the Salary Expert website, the highest compensation for such positions, about $60,000 a year, is in San Francisco. Animal shelter managers in the New York and Atlanta metro areas can expect to earn about $50,000 a year.'],
134
+ ['what is the salary of an animal shelter manager', 'Experience and years of service factor into an animal shelter manager’s salary. In May 2010, managers with 1 to 4 years of experience earned the least amount of money, $36,061. Those with 20 years or more experience, however, make $60,521, according to Pay Scale. Size. The size of animal shelter also correlates to the manager’s salary. The more animals, the more employees, the more responsibility for the manager. In May, 2010, animal shelter managers working in a shelter employing 1 to 9 people, earned $33,835 on average.'],
135
+ ]
136
+ scores = model.predict(pairs)
137
+ print(scores.shape)
138
+ # (5,)
139
+
140
+ # Or rank different texts based on similarity to a single text
141
+ ranks = model.rank(
142
+ 'what is the salary of an animal shelter manager',
143
+ [
144
+ 'Average Animal Shelter Salaries. The average salary for animal shelter jobs is $50,000. Average animal shelter salaries can vary greatly due to company, location, industry, experience and benefits. This salary was calculated using the average salary for all jobs with the term animal shelter anywhere in the job listing.',
145
+ 'The salary that an animal shelter manager earns can vary based on a variety of factors such as their specific responsibilities, their years of experience, their educational background, and the region in which the position is located. Most animal shelter manager positions do not carry particularly high salaries, but those who follow animal rescue career paths tend to be willing to sacrifice some earning potential for the prospect of being able to help animals in need.',
146
+ 'Animal shelter managers’ salaries vary depending on their state and location. For example, the Midwest sits at the bottom of the list. Based on the May, 2010 Pay Scale survey, Illinois managers made $35,382, while the average Californian animal shelter manager earned $55,224. Size. The size of animal shelter also correlates to the manager’s salary. The more animals, the more employees, the more responsibility for the manager. In May, 2010, animal shelter managers working in a shelter employing 1 to 9 people, earned $33,835 on average.',
147
+ 'Salary by Region. Salaries for animal shelter managers also vary by region. According to the Salary Expert website, the highest compensation for such positions, about $60,000 a year, is in San Francisco. Animal shelter managers in the New York and Atlanta metro areas can expect to earn about $50,000 a year.',
148
+ 'Experience and years of service factor into an animal shelter manager’s salary. In May 2010, managers with 1 to 4 years of experience earned the least amount of money, $36,061. Those with 20 years or more experience, however, make $60,521, according to Pay Scale. Size. The size of animal shelter also correlates to the manager’s salary. The more animals, the more employees, the more responsibility for the manager. In May, 2010, animal shelter managers working in a shelter employing 1 to 9 people, earned $33,835 on average.',
149
+ ]
150
+ )
151
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
152
+ ```
153
+
154
+ <!--
155
+ ### Direct Usage (Transformers)
156
+
157
+ <details><summary>Click to see the direct usage in Transformers</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Downstream Usage (Sentence Transformers)
164
+
165
+ You can finetune this model on your own dataset.
166
+
167
+ <details><summary>Click to expand</summary>
168
+
169
+ </details>
170
+ -->
171
+
172
+ <!--
173
+ ### Out-of-Scope Use
174
+
175
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
176
+ -->
177
+
178
+ ## Evaluation
179
+
180
+ ### Metrics
181
+
182
+ #### Cross Encoder Reranking
183
+
184
+ * Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
185
+ * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
186
+ ```json
187
+ {
188
+ "at_k": 10,
189
+ "always_rerank_positives": true
190
+ }
191
+ ```
192
+
193
+ | Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
194
+ |:------------|:---------------------|:---------------------|:---------------------|
195
+ | map | 0.5555 (+0.0659) | 0.3715 (+0.1105) | 0.6598 (+0.2401) |
196
+ | mrr@10 | 0.5440 (+0.0665) | 0.5840 (+0.0842) | 0.6830 (+0.2563) |
197
+ | **ndcg@10** | **0.6012 (+0.0607)** | **0.4065 (+0.0815)** | **0.7061 (+0.2055)** |
198
+
199
+ #### Cross Encoder Nano BEIR
200
+
201
+ * Dataset: `NanoBEIR_R100_mean`
202
+ * Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
203
+ ```json
204
+ {
205
+ "dataset_names": [
206
+ "msmarco",
207
+ "nfcorpus",
208
+ "nq"
209
+ ],
210
+ "rerank_k": 100,
211
+ "at_k": 10,
212
+ "always_rerank_positives": true
213
+ }
214
+ ```
215
+
216
+ | Metric | Value |
217
+ |:------------|:---------------------|
218
+ | map | 0.5289 (+0.1389) |
219
+ | mrr@10 | 0.6037 (+0.1356) |
220
+ | **ndcg@10** | **0.5713 (+0.1159)** |
221
+
222
+ <!--
223
+ ## Bias, Risks and Limitations
224
+
225
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
226
+ -->
227
+
228
+ <!--
229
+ ### Recommendations
230
+
231
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
232
+ -->
233
+
234
+ ## Training Details
235
+
236
+ ### Training Dataset
237
+
238
+ #### ms_marco
239
+
240
+ * Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
241
+ * Size: 78,704 training samples
242
+ * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
243
+ * Approximate statistics based on the first 1000 samples:
244
+ | | query | docs | labels |
245
+ |:--------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
246
+ | type | string | list | list |
247
+ | details | <ul><li>min: 10 characters</li><li>mean: 33.66 characters</li><li>max: 103 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |
248
+ * Samples:
249
+ | query | docs | labels |
250
+ |:------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
251
+ | <code>a gram is times as large as a milligram</code> | <code>['1 milligram is 1000 times smaller than 1 gram so 1000 milligram = 1 gram. 1 milligram is 1000 times smaller than 1 gram so 1000 milligram = 1 gram. 1 microgram is 1000 times smaller than a 1 milligram and 1 million times smaller than 1 gram. 1 microgram is 1000 times smaller than a 1 milligram and 1 million times smaller than 1 gram. It takes 1 million mcg = 1 gram. Kilograms are 1000 times larger than a gram (1 kg = 1000 g). Kilograms are 1000 times larger than a gram (1 kg = 1000 g). Kilograms is used to denote weights of clients, upon med doses are based.', 'So to find out how many milligrams in grams, simply multiply it by 1000 or instead, use the converter below. 1 Gram = 1000 Milligrams. Gram is a metric system unit of mass. It is one thousandth (1/1000) of the metric system base unit, kilogram. It is a very commonly used unit of mass in daily life. The abbreviation is g. Milligram is a small unit of mass in metric system and used commonly in medicine and pharmacy etc.', 'A kil...</code> | <code>[1, 1, 0, 0, 0, ...]</code> |
252
+ | <code>income limit for dependent on taxes</code> | <code>['Qualifying Relative. For qualifying relatives, there is a strict limit on how much income they could make during the year. A qualifying relative cannot make more than $3,700 of gross income during the year. If he makes more than $3,700, then he cannot be a dependent. ', "Claiming an earner as a dependent can also affect that person's own tax filing. She can only claim her earned income plus $300 as a standard deduction on her return if this amounts to less than the standard deduction for that year, $5,950 as of 2012. Your dependent cannot claim anyone else as a dependent on her own return.", 'If you had $12,000 in income, for example, and $800 in eligible child care expenses, then, your credit would be 35 percent of $800, or $280. For taxpayers with incomes of more than $43,000, the percentage was 20 percent, with no upper income limit. So whether you had income of $44,000 or $440,000, your credit would be 20 percent. If you had $2,000 in care expenses, that translates to $400.', 'Hi...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
253
+ | <code>how much does it cost to have your own website</code> | <code>["Some hosts also offer discounts if you pay a year (or more) in advance. Prices vary from web host to web host but are usually (at the time I wrote this article) around $10 per month if your website is new and doesn't have much traffic or data. There are many ways to advertise your site, such as in newspapers, magazines, TV, as well as over the web. Since the cost for ads in the traditional media varies from country to country, you will have to do your own research.", 'Domain Registration. To have your own domain name (.com, .net, .org, .nu) you must register the domain. This typically costs anywhere between $10 to $12 (USD) and is billed on a yearly basis. GoDaddy and E-Starr are two companies that register your domain for less than $12 a year.', 'At minimum, you need to invest in your own domain name and hosting. Depending on the type of domain name you choose, the costs could run from just $10 a year, to hundreds or even millions ! The options for website hosting run the gamut in p...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
254
+ * Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters:
255
+ ```json
256
+ {
257
+ "activation_fn": "torch.nn.modules.linear.Identity",
258
+ "mini_batch_size": 16
259
+ }
260
+ ```
261
+
262
+ ### Evaluation Dataset
263
+
264
+ #### ms_marco
265
+
266
+ * Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
267
+ * Size: 1,000 evaluation samples
268
+ * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
269
+ * Approximate statistics based on the first 1000 samples:
270
+ | | query | docs | labels |
271
+ |:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
272
+ | type | string | list | list |
273
+ | details | <ul><li>min: 11 characters</li><li>mean: 34.3 characters</li><li>max: 105 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |
274
+ * Samples:
275
+ | query | docs | labels |
276
+ |:-------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
277
+ | <code>what is the salary of an animal shelter manager</code> | <code>['Average Animal Shelter Salaries. The average salary for animal shelter jobs is $50,000. Average animal shelter salaries can vary greatly due to company, location, industry, experience and benefits. This salary was calculated using the average salary for all jobs with the term animal shelter anywhere in the job listing.', 'The salary that an animal shelter manager earns can vary based on a variety of factors such as their specific responsibilities, their years of experience, their educational background, and the region in which the position is located. Most animal shelter manager positions do not carry particularly high salaries, but those who follow animal rescue career paths tend to be willing to sacrifice some earning potential for the prospect of being able to help animals in need.', 'Animal shelter managers’ salaries vary depending on their state and location. For example, the Midwest sits at the bottom of the list. Based on the May, 2010 Pay Scale survey, Illinois managers made ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
278
+ | <code>how long do quail eggs take to hatch</code> | <code>['I am often asked how long it takes quail eggs to hatch. The incubation period for bobwhite quail eggs is 23-24 days. Here is a link to information on incubating bobwhite quail eggs http://www.farmingfriends.com/incubating-bobwhite-quail-eggs/. The incubation period for Coturnix (Japanese) quail eggs is 17 days. Here is a link for information about incubating japanese quail eggs. http://www.farmingfriends.com/incubating-coturnix-japanese-quail/. Usually the hen will keep sitting if she thinks the other eggs are fertile and I have read that the hen can feel movement in the eggs so will keep sitting. Quail eggs take about 17 days to hatch and hen eggs take 21 days.', 'Turkey eggs usually take 21 to 28 days to hatch depending on what they are incubated in like an incubator or by a hen. It also depends on how fertile it is and how it is cared … for. It usually takes closer to 28 days. ', 'When you are trying to hatch Tennessee red quail eggs, it will take approximately 23 days. You shoul...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
279
+ | <code>sign of june</code> | <code>['June 1 – June 20 Gemini June 21 – June 30 Cancer. Those bearing the Gemini zodiac are incredibly flexible people who can adapt to almost any situation. They also possess a tenacity that not only enables them to rise above major setbacks but to take full advantage of negative situations as well.', 'Air is your paired element and as a Gemini, you have the most fluid connection with air out of any of the zodiac signs. You often witness curiosity pushing through you like a constant breeze and once you find something that truly interests you, your will seems to push with purpose.', 'There are 12 different stones listed as birthstones for the calendar month of June, or as Sun/Star, Planetary, or Talismanic stones for the Zodiac sign of Gemini or Cancer.', 'If you were born on the 26th of June you are a Cancer in the Western zodiac.', 'Birthday Meanings Of People Born On 6th June (Zodiac Sign Gemini). IF YOUR BIRTHDAY IS June 6, then you are a Gemini, who love to joke and play around. The G...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
280
+ * Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters:
281
+ ```json
282
+ {
283
+ "activation_fn": "torch.nn.modules.linear.Identity",
284
+ "mini_batch_size": 16
285
+ }
286
+ ```
287
+
288
+ ### Training Hyperparameters
289
+ #### Non-Default Hyperparameters
290
+
291
+ - `eval_strategy`: steps
292
+ - `per_device_train_batch_size`: 16
293
+ - `per_device_eval_batch_size`: 16
294
+ - `learning_rate`: 2e-05
295
+ - `num_train_epochs`: 5
296
+ - `seed`: 12
297
+ - `bf16`: True
298
+ - `load_best_model_at_end`: True
299
+
300
+ #### All Hyperparameters
301
+ <details><summary>Click to expand</summary>
302
+
303
+ - `overwrite_output_dir`: False
304
+ - `do_predict`: False
305
+ - `eval_strategy`: steps
306
+ - `prediction_loss_only`: True
307
+ - `per_device_train_batch_size`: 16
308
+ - `per_device_eval_batch_size`: 16
309
+ - `per_gpu_train_batch_size`: None
310
+ - `per_gpu_eval_batch_size`: None
311
+ - `gradient_accumulation_steps`: 1
312
+ - `eval_accumulation_steps`: None
313
+ - `torch_empty_cache_steps`: None
314
+ - `learning_rate`: 2e-05
315
+ - `weight_decay`: 0.0
316
+ - `adam_beta1`: 0.9
317
+ - `adam_beta2`: 0.999
318
+ - `adam_epsilon`: 1e-08
319
+ - `max_grad_norm`: 1.0
320
+ - `num_train_epochs`: 5
321
+ - `max_steps`: -1
322
+ - `lr_scheduler_type`: linear
323
+ - `lr_scheduler_kwargs`: {}
324
+ - `warmup_ratio`: 0.0
325
+ - `warmup_steps`: 0
326
+ - `log_level`: passive
327
+ - `log_level_replica`: warning
328
+ - `log_on_each_node`: True
329
+ - `logging_nan_inf_filter`: True
330
+ - `save_safetensors`: True
331
+ - `save_on_each_node`: False
332
+ - `save_only_model`: False
333
+ - `restore_callback_states_from_checkpoint`: False
334
+ - `no_cuda`: False
335
+ - `use_cpu`: False
336
+ - `use_mps_device`: False
337
+ - `seed`: 12
338
+ - `data_seed`: None
339
+ - `jit_mode_eval`: False
340
+ - `use_ipex`: False
341
+ - `bf16`: True
342
+ - `fp16`: False
343
+ - `fp16_opt_level`: O1
344
+ - `half_precision_backend`: auto
345
+ - `bf16_full_eval`: False
346
+ - `fp16_full_eval`: False
347
+ - `tf32`: None
348
+ - `local_rank`: 0
349
+ - `ddp_backend`: None
350
+ - `tpu_num_cores`: None
351
+ - `tpu_metrics_debug`: False
352
+ - `debug`: []
353
+ - `dataloader_drop_last`: False
354
+ - `dataloader_num_workers`: 0
355
+ - `dataloader_prefetch_factor`: None
356
+ - `past_index`: -1
357
+ - `disable_tqdm`: False
358
+ - `remove_unused_columns`: True
359
+ - `label_names`: None
360
+ - `load_best_model_at_end`: True
361
+ - `ignore_data_skip`: False
362
+ - `fsdp`: []
363
+ - `fsdp_min_num_params`: 0
364
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
365
+ - `fsdp_transformer_layer_cls_to_wrap`: None
366
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
367
+ - `deepspeed`: None
368
+ - `label_smoothing_factor`: 0.0
369
+ - `optim`: adamw_torch
370
+ - `optim_args`: None
371
+ - `adafactor`: False
372
+ - `group_by_length`: False
373
+ - `length_column_name`: length
374
+ - `ddp_find_unused_parameters`: None
375
+ - `ddp_bucket_cap_mb`: None
376
+ - `ddp_broadcast_buffers`: False
377
+ - `dataloader_pin_memory`: True
378
+ - `dataloader_persistent_workers`: False
379
+ - `skip_memory_metrics`: True
380
+ - `use_legacy_prediction_loop`: False
381
+ - `push_to_hub`: False
382
+ - `resume_from_checkpoint`: None
383
+ - `hub_model_id`: None
384
+ - `hub_strategy`: every_save
385
+ - `hub_private_repo`: None
386
+ - `hub_always_push`: False
387
+ - `hub_revision`: None
388
+ - `gradient_checkpointing`: False
389
+ - `gradient_checkpointing_kwargs`: None
390
+ - `include_inputs_for_metrics`: False
391
+ - `include_for_metrics`: []
392
+ - `eval_do_concat_batches`: True
393
+ - `fp16_backend`: auto
394
+ - `push_to_hub_model_id`: None
395
+ - `push_to_hub_organization`: None
396
+ - `mp_parameters`:
397
+ - `auto_find_batch_size`: False
398
+ - `full_determinism`: False
399
+ - `torchdynamo`: None
400
+ - `ray_scope`: last
401
+ - `ddp_timeout`: 1800
402
+ - `torch_compile`: False
403
+ - `torch_compile_backend`: None
404
+ - `torch_compile_mode`: None
405
+ - `include_tokens_per_second`: False
406
+ - `include_num_input_tokens_seen`: False
407
+ - `neftune_noise_alpha`: None
408
+ - `optim_target_modules`: None
409
+ - `batch_eval_metrics`: False
410
+ - `eval_on_start`: False
411
+ - `use_liger_kernel`: False
412
+ - `liger_kernel_config`: None
413
+ - `eval_use_gather_object`: False
414
+ - `average_tokens_across_devices`: False
415
+ - `prompts`: None
416
+ - `batch_sampler`: batch_sampler
417
+ - `multi_dataset_batch_sampler`: proportional
418
+ - `router_mapping`: {}
419
+ - `learning_rate_mapping`: {}
420
+
421
+ </details>
422
+
423
+ ### Training Logs
424
+ <details><summary>Click to expand</summary>
425
+
426
+ | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
427
+ |:----------:|:--------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
428
+ | -1 | -1 | - | - | 0.0475 (-0.4929) | 0.2463 (-0.0787) | 0.0589 (-0.4418) | 0.1176 (-0.3378) |
429
+ | 0.0002 | 1 | 2.1526 | - | - | - | - | - |
430
+ | 0.0203 | 100 | 2.0847 | 2.0890 | 0.1559 (-0.3845) | 0.2694 (-0.0556) | 0.1030 (-0.3976) | 0.1761 (-0.2792) |
431
+ | 0.0407 | 200 | 2.0834 | 2.0844 | 0.3588 (-0.1817) | 0.2750 (-0.0500) | 0.3993 (-0.1013) | 0.3444 (-0.1110) |
432
+ | 0.0610 | 300 | 2.0775 | 2.0807 | 0.4209 (-0.1196) | 0.3176 (-0.0075) | 0.3781 (-0.1226) | 0.3722 (-0.0832) |
433
+ | 0.0813 | 400 | 2.0934 | 2.0779 | 0.5085 (-0.0319) | 0.3194 (-0.0056) | 0.5146 (+0.0140) | 0.4475 (-0.0079) |
434
+ | 0.1016 | 500 | 2.0693 | 2.0760 | 0.5408 (+0.0003) | 0.3275 (+0.0024) | 0.5793 (+0.0786) | 0.4825 (+0.0271) |
435
+ | 0.1220 | 600 | 2.0753 | 2.0753 | 0.5580 (+0.0176) | 0.3464 (+0.0213) | 0.6250 (+0.1244) | 0.5098 (+0.0544) |
436
+ | 0.1423 | 700 | 2.0712 | 2.0752 | 0.5756 (+0.0352) | 0.3418 (+0.0168) | 0.6753 (+0.1747) | 0.5309 (+0.0756) |
437
+ | 0.1626 | 800 | 2.0688 | 2.0743 | 0.5689 (+0.0284) | 0.3171 (-0.0079) | 0.6427 (+0.1420) | 0.5096 (+0.0542) |
438
+ | 0.1830 | 900 | 2.0723 | 2.0742 | 0.5762 (+0.0358) | 0.3681 (+0.0431) | 0.6712 (+0.1705) | 0.5385 (+0.0831) |
439
+ | 0.2033 | 1000 | 2.0743 | 2.0744 | 0.5799 (+0.0394) | 0.3723 (+0.0473) | 0.6483 (+0.1477) | 0.5335 (+0.0781) |
440
+ | 0.2236 | 1100 | 2.0728 | 2.0739 | 0.5995 (+0.0590) | 0.3717 (+0.0467) | 0.6674 (+0.1668) | 0.5462 (+0.0908) |
441
+ | 0.2440 | 1200 | 2.0735 | 2.0747 | 0.5869 (+0.0465) | 0.3735 (+0.0484) | 0.6365 (+0.1359) | 0.5323 (+0.0770) |
442
+ | 0.2643 | 1300 | 2.0677 | 2.0733 | 0.6003 (+0.0598) | 0.3783 (+0.0532) | 0.5812 (+0.0806) | 0.5199 (+0.0646) |
443
+ | 0.2846 | 1400 | 2.0647 | 2.0739 | 0.5669 (+0.0264) | 0.3423 (+0.0172) | 0.6041 (+0.1034) | 0.5044 (+0.0490) |
444
+ | 0.3049 | 1500 | 2.0764 | 2.0740 | 0.5728 (+0.0324) | 0.3761 (+0.0510) | 0.6380 (+0.1373) | 0.5289 (+0.0736) |
445
+ | 0.3253 | 1600 | 2.0652 | 2.0741 | 0.6202 (+0.0797) | 0.3806 (+0.0556) | 0.6523 (+0.1516) | 0.5510 (+0.0956) |
446
+ | 0.3456 | 1700 | 2.0733 | 2.0731 | 0.5948 (+0.0544) | 0.3869 (+0.0619) | 0.6421 (+0.1415) | 0.5413 (+0.0859) |
447
+ | 0.3659 | 1800 | 2.0679 | 2.0734 | 0.5797 (+0.0393) | 0.3790 (+0.0540) | 0.6340 (+0.1333) | 0.5309 (+0.0755) |
448
+ | 0.3863 | 1900 | 2.075 | 2.0733 | 0.6027 (+0.0623) | 0.3931 (+0.0680) | 0.6285 (+0.1278) | 0.5414 (+0.0861) |
449
+ | 0.4066 | 2000 | 2.0724 | 2.0732 | 0.5920 (+0.0516) | 0.4056 (+0.0806) | 0.6277 (+0.1271) | 0.5418 (+0.0864) |
450
+ | 0.4269 | 2100 | 2.0866 | 2.0721 | 0.6059 (+0.0655) | 0.4060 (+0.0810) | 0.6602 (+0.1596) | 0.5574 (+0.1020) |
451
+ | 0.4472 | 2200 | 2.0738 | 2.0725 | 0.6148 (+0.0744) | 0.4167 (+0.0917) | 0.6356 (+0.1350) | 0.5557 (+0.1003) |
452
+ | 0.4676 | 2300 | 2.0699 | 2.0722 | 0.6112 (+0.0707) | 0.3992 (+0.0742) | 0.6919 (+0.1913) | 0.5674 (+0.1121) |
453
+ | 0.4879 | 2400 | 2.0673 | 2.0725 | 0.5909 (+0.0505) | 0.3820 (+0.0570) | 0.6462 (+0.1455) | 0.5397 (+0.0843) |
454
+ | 0.5082 | 2500 | 2.0687 | 2.0725 | 0.5926 (+0.0521) | 0.3838 (+0.0587) | 0.6493 (+0.1486) | 0.5419 (+0.0865) |
455
+ | 0.5286 | 2600 | 2.0649 | 2.0725 | 0.6206 (+0.0801) | 0.3825 (+0.0574) | 0.6708 (+0.1702) | 0.5580 (+0.1026) |
456
+ | 0.5489 | 2700 | 2.0686 | 2.0729 | 0.5457 (+0.0053) | 0.3728 (+0.0478) | 0.6497 (+0.1491) | 0.5227 (+0.0674) |
457
+ | 0.5692 | 2800 | 2.0774 | 2.0716 | 0.5827 (+0.0422) | 0.3931 (+0.0680) | 0.6744 (+0.1737) | 0.5500 (+0.0947) |
458
+ | 0.5896 | 2900 | 2.0638 | 2.0724 | 0.6289 (+0.0884) | 0.3915 (+0.0665) | 0.6878 (+0.1872) | 0.5694 (+0.1140) |
459
+ | 0.6099 | 3000 | 2.0509 | 2.0718 | 0.5888 (+0.0483) | 0.3906 (+0.0656) | 0.6806 (+0.1800) | 0.5533 (+0.0980) |
460
+ | 0.6302 | 3100 | 2.0703 | 2.0715 | 0.6150 (+0.0746) | 0.3832 (+0.0582) | 0.6645 (+0.1638) | 0.5542 (+0.0989) |
461
+ | 0.6505 | 3200 | 2.0785 | 2.0718 | 0.5982 (+0.0577) | 0.3766 (+0.0515) | 0.6867 (+0.1860) | 0.5538 (+0.0984) |
462
+ | 0.6709 | 3300 | 2.0691 | 2.0716 | 0.6034 (+0.0629) | 0.3814 (+0.0563) | 0.6262 (+0.1255) | 0.5370 (+0.0816) |
463
+ | 0.6912 | 3400 | 2.0648 | 2.0721 | 0.6354 (+0.0950) | 0.3811 (+0.0560) | 0.6841 (+0.1834) | 0.5669 (+0.1115) |
464
+ | 0.7115 | 3500 | 2.0645 | 2.0719 | 0.6226 (+0.0821) | 0.3802 (+0.0551) | 0.6867 (+0.1860) | 0.5631 (+0.1078) |
465
+ | 0.7319 | 3600 | 2.0627 | 2.0719 | 0.5720 (+0.0316) | 0.3800 (+0.0549) | 0.6702 (+0.1696) | 0.5407 (+0.0854) |
466
+ | 0.7522 | 3700 | 2.0737 | 2.0719 | 0.5945 (+0.0540) | 0.3793 (+0.0542) | 0.6807 (+0.1801) | 0.5515 (+0.0961) |
467
+ | 0.7725 | 3800 | 2.0659 | 2.0721 | 0.5833 (+0.0429) | 0.3749 (+0.0498) | 0.6565 (+0.1559) | 0.5382 (+0.0829) |
468
+ | **0.7928** | **3900** | **2.063** | **2.0724** | **0.6012 (+0.0607)** | **0.4065 (+0.0815)** | **0.7061 (+0.2055)** | **0.5713 (+0.1159)** |
469
+ | 0.8132 | 4000 | 2.0685 | 2.0720 | 0.6246 (+0.0842) | 0.3876 (+0.0626) | 0.6563 (+0.1556) | 0.5562 (+0.1008) |
470
+ | 0.8335 | 4100 | 2.0705 | 2.0719 | 0.6045 (+0.0641) | 0.3731 (+0.0480) | 0.6908 (+0.1902) | 0.5561 (+0.1008) |
471
+ | 0.8538 | 4200 | 2.066 | 2.0714 | 0.6121 (+0.0717) | 0.3783 (+0.0533) | 0.6603 (+0.1597) | 0.5503 (+0.0949) |
472
+ | 0.8742 | 4300 | 2.06 | 2.0716 | 0.6186 (+0.0782) | 0.3877 (+0.0627) | 0.6495 (+0.1488) | 0.5520 (+0.0966) |
473
+ | 0.8945 | 4400 | 2.0777 | 2.0710 | 0.6079 (+0.0674) | 0.3937 (+0.0686) | 0.6654 (+0.1647) | 0.5556 (+0.1003) |
474
+ | 0.9148 | 4500 | 2.0558 | 2.0725 | 0.6238 (+0.0833) | 0.3757 (+0.0507) | 0.6381 (+0.1374) | 0.5458 (+0.0905) |
475
+ | 0.9351 | 4600 | 2.0675 | 2.0718 | 0.6313 (+0.0909) | 0.3729 (+0.0478) | 0.6558 (+0.1551) | 0.5533 (+0.0979) |
476
+ | 0.9555 | 4700 | 2.0755 | 2.0726 | 0.6048 (+0.0644) | 0.3500 (+0.0250) | 0.6126 (+0.1120) | 0.5225 (+0.0671) |
477
+ | 0.9758 | 4800 | 2.0658 | 2.0716 | 0.6217 (+0.0812) | 0.3875 (+0.0625) | 0.6695 (+0.1689) | 0.5596 (+0.1042) |
478
+ | 0.9961 | 4900 | 2.0735 | 2.0716 | 0.6073 (+0.0669) | 0.3537 (+0.0287) | 0.6470 (+0.1463) | 0.5360 (+0.0806) |
479
+ | 1.0165 | 5000 | 2.061 | 2.0712 | 0.6010 (+0.0605) | 0.3785 (+0.0534) | 0.6492 (+0.1486) | 0.5429 (+0.0875) |
480
+ | 1.0368 | 5100 | 2.0642 | 2.0719 | 0.6026 (+0.0622) | 0.3840 (+0.0589) | 0.6498 (+0.1491) | 0.5454 (+0.0901) |
481
+ | 1.0571 | 5200 | 2.0681 | 2.0711 | 0.6143 (+0.0739) | 0.3802 (+0.0551) | 0.7052 (+0.2046) | 0.5666 (+0.1112) |
482
+ | 1.0775 | 5300 | 2.0596 | 2.0709 | 0.6166 (+0.0762) | 0.3897 (+0.0647) | 0.6642 (+0.1636) | 0.5569 (+0.1015) |
483
+ | 1.0978 | 5400 | 2.0576 | 2.0710 | 0.5779 (+0.0375) | 0.3831 (+0.0581) | 0.6276 (+0.1269) | 0.5295 (+0.0742) |
484
+ | 1.1181 | 5500 | 2.0675 | 2.0720 | 0.6164 (+0.0759) | 0.3843 (+0.0593) | 0.6712 (+0.1705) | 0.5573 (+0.1019) |
485
+ | 1.1384 | 5600 | 2.0647 | 2.0720 | 0.5934 (+0.0529) | 0.3860 (+0.0610) | 0.6664 (+0.1657) | 0.5486 (+0.0932) |
486
+ | 1.1588 | 5700 | 2.0587 | 2.0715 | 0.6235 (+0.0831) | 0.3813 (+0.0562) | 0.6858 (+0.1852) | 0.5635 (+0.1082) |
487
+ | 1.1791 | 5800 | 2.0608 | 2.0718 | 0.6298 (+0.0894) | 0.3680 (+0.0430) | 0.6572 (+0.1565) | 0.5517 (+0.0963) |
488
+ | 1.1994 | 5900 | 2.0642 | 2.0720 | 0.5838 (+0.0434) | 0.3961 (+0.0710) | 0.6678 (+0.1671) | 0.5492 (+0.0939) |
489
+ | 1.2198 | 6000 | 2.0588 | 2.0719 | 0.5920 (+0.0516) | 0.3869 (+0.0619) | 0.6653 (+0.1646) | 0.5481 (+0.0927) |
490
+ | 1.2401 | 6100 | 2.0631 | 2.0722 | 0.5666 (+0.0262) | 0.3672 (+0.0421) | 0.6692 (+0.1685) | 0.5343 (+0.0789) |
491
+ | 1.2604 | 6200 | 2.0591 | 2.0724 | 0.5742 (+0.0338) | 0.3637 (+0.0387) | 0.6546 (+0.1540) | 0.5309 (+0.0755) |
492
+ | 1.2807 | 6300 | 2.0567 | 2.0725 | 0.5693 (+0.0288) | 0.3756 (+0.0506) | 0.6682 (+0.1676) | 0.5377 (+0.0823) |
493
+ | 1.3011 | 6400 | 2.0597 | 2.0716 | 0.5587 (+0.0183) | 0.3599 (+0.0349) | 0.6731 (+0.1724) | 0.5306 (+0.0752) |
494
+ | 1.3214 | 6500 | 2.0647 | 2.0727 | 0.5838 (+0.0434) | 0.3633 (+0.0383) | 0.6556 (+0.1550) | 0.5343 (+0.0789) |
495
+ | 1.3417 | 6600 | 2.0624 | 2.0712 | 0.5602 (+0.0198) | 0.3697 (+0.0446) | 0.6359 (+0.1353) | 0.5219 (+0.0666) |
496
+ | 1.3621 | 6700 | 2.0604 | 2.0714 | 0.5784 (+0.0379) | 0.3629 (+0.0379) | 0.6383 (+0.1376) | 0.5265 (+0.0711) |
497
+ | 1.3824 | 6800 | 2.0702 | 2.0711 | 0.5400 (-0.0004) | 0.3814 (+0.0563) | 0.5985 (+0.0979) | 0.5066 (+0.0512) |
498
+ | 1.4027 | 6900 | 2.0569 | 2.0713 | 0.5239 (-0.0165) | 0.3827 (+0.0576) | 0.6110 (+0.1103) | 0.5059 (+0.0505) |
499
+ | 1.4231 | 7000 | 2.0689 | 2.0726 | 0.5382 (-0.0022) | 0.3912 (+0.0661) | 0.6323 (+0.1316) | 0.5205 (+0.0652) |
500
+ | 1.4434 | 7100 | 2.056 | 2.0717 | 0.5331 (-0.0074) | 0.3691 (+0.0441) | 0.6244 (+0.1238) | 0.5089 (+0.0535) |
501
+ | 1.4637 | 7200 | 2.0573 | 2.0717 | 0.5668 (+0.0263) | 0.3769 (+0.0519) | 0.6235 (+0.1228) | 0.5224 (+0.0670) |
502
+ | 1.4840 | 7300 | 2.0544 | 2.0720 | 0.5543 (+0.0139) | 0.3875 (+0.0624) | 0.6240 (+0.1233) | 0.5219 (+0.0666) |
503
+ | 1.5044 | 7400 | 2.0684 | 2.0718 | 0.5684 (+0.0280) | 0.3753 (+0.0503) | 0.6075 (+0.1068) | 0.5171 (+0.0617) |
504
+ | 1.5247 | 7500 | 2.0588 | 2.0718 | 0.5663 (+0.0259) | 0.3904 (+0.0654) | 0.6564 (+0.1557) | 0.5377 (+0.0823) |
505
+ | 1.5450 | 7600 | 2.0556 | 2.0713 | 0.5764 (+0.0360) | 0.3732 (+0.0482) | 0.6323 (+0.1317) | 0.5273 (+0.0719) |
506
+ | 1.5654 | 7700 | 2.0572 | 2.0716 | 0.5589 (+0.0185) | 0.3876 (+0.0626) | 0.6327 (+0.1320) | 0.5264 (+0.0710) |
507
+ | 1.5857 | 7800 | 2.0662 | 2.0712 | 0.5577 (+0.0173) | 0.3912 (+0.0662) | 0.6744 (+0.1737) | 0.5411 (+0.0857) |
508
+ | 1.6060 | 7900 | 2.063 | 2.0720 | 0.5444 (+0.0040) | 0.3859 (+0.0609) | 0.6401 (+0.1395) | 0.5235 (+0.0681) |
509
+ | 1.6263 | 8000 | 2.0641 | 2.0728 | 0.5565 (+0.0160) | 0.4032 (+0.0781) | 0.6318 (+0.1311) | 0.5305 (+0.0751) |
510
+ | 1.6467 | 8100 | 2.0529 | 2.0720 | 0.5508 (+0.0104) | 0.3929 (+0.0679) | 0.6016 (+0.1010) | 0.5151 (+0.0598) |
511
+ | 1.6670 | 8200 | 2.0734 | 2.0732 | 0.5626 (+0.0221) | 0.3920 (+0.0670) | 0.6223 (+0.1216) | 0.5256 (+0.0702) |
512
+ | 1.6873 | 8300 | 2.0645 | 2.0719 | 0.5660 (+0.0255) | 0.3953 (+0.0702) | 0.6511 (+0.1504) | 0.5374 (+0.0821) |
513
+ | 1.7077 | 8400 | 2.0637 | 2.0719 | 0.5640 (+0.0236) | 0.3890 (+0.0640) | 0.6608 (+0.1602) | 0.5379 (+0.0826) |
514
+ | 1.7280 | 8500 | 2.0588 | 2.0715 | 0.5875 (+0.0471) | 0.3911 (+0.0661) | 0.6827 (+0.1820) | 0.5538 (+0.0984) |
515
+ | 1.7483 | 8600 | 2.0584 | 2.0720 | 0.5755 (+0.0351) | 0.4047 (+0.0797) | 0.6930 (+0.1924) | 0.5578 (+0.1024) |
516
+ | 1.7687 | 8700 | 2.0622 | 2.0726 | 0.5884 (+0.0480) | 0.3793 (+0.0542) | 0.6777 (+0.1771) | 0.5485 (+0.0931) |
517
+ | 1.7890 | 8800 | 2.059 | 2.0725 | 0.5876 (+0.0472) | 0.3962 (+0.0712) | 0.7014 (+0.2007) | 0.5617 (+0.1064) |
518
+ | 1.8093 | 8900 | 2.0561 | 2.0720 | 0.5855 (+0.0451) | 0.3997 (+0.0747) | 0.6678 (+0.1671) | 0.5510 (+0.0956) |
519
+ | 1.8296 | 9000 | 2.0627 | 2.0718 | 0.5876 (+0.0472) | 0.3902 (+0.0652) | 0.6706 (+0.1700) | 0.5495 (+0.0941) |
520
+ | 1.8500 | 9100 | 2.0516 | 2.0716 | 0.5754 (+0.0349) | 0.3946 (+0.0696) | 0.6524 (+0.1518) | 0.5408 (+0.0854) |
521
+ | 1.8703 | 9200 | 2.0553 | 2.0714 | 0.5678 (+0.0274) | 0.3869 (+0.0619) | 0.6543 (+0.1536) | 0.5363 (+0.0810) |
522
+ | 1.8906 | 9300 | 2.0606 | 2.0714 | 0.5426 (+0.0022) | 0.4028 (+0.0778) | 0.6784 (+0.1778) | 0.5413 (+0.0859) |
523
+ | 1.9110 | 9400 | 2.0502 | 2.0714 | 0.5644 (+0.0240) | 0.3986 (+0.0736) | 0.6751 (+0.1745) | 0.5461 (+0.0907) |
524
+ | 1.9313 | 9500 | 2.0617 | 2.0719 | 0.5160 (-0.0244) | 0.3915 (+0.0664) | 0.6381 (+0.1374) | 0.5152 (+0.0598) |
525
+ | 1.9516 | 9600 | 2.0525 | 2.0712 | 0.5532 (+0.0128) | 0.3886 (+0.0636) | 0.6453 (+0.1446) | 0.5290 (+0.0737) |
526
+ | 1.9719 | 9700 | 2.059 | 2.0713 | 0.5565 (+0.0161) | 0.3922 (+0.0671) | 0.6576 (+0.1569) | 0.5354 (+0.0800) |
527
+ | 1.9923 | 9800 | 2.0607 | 2.0723 | 0.5623 (+0.0219) | 0.3930 (+0.0680) | 0.6539 (+0.1533) | 0.5364 (+0.0810) |
528
+ | 2.0126 | 9900 | 2.0462 | 2.0758 | 0.5482 (+0.0078) | 0.4075 (+0.0825) | 0.6371 (+0.1364) | 0.5309 (+0.0756) |
529
+ | 2.0329 | 10000 | 2.0481 | 2.0783 | 0.5441 (+0.0037) | 0.3783 (+0.0532) | 0.6386 (+0.1379) | 0.5203 (+0.0649) |
530
+ | 2.0533 | 10100 | 2.0392 | 2.0772 | 0.5299 (-0.0106) | 0.3750 (+0.0499) | 0.6398 (+0.1391) | 0.5149 (+0.0595) |
531
+ | 2.0736 | 10200 | 2.0362 | 2.0779 | 0.5068 (-0.0337) | 0.3699 (+0.0448) | 0.6162 (+0.1156) | 0.4976 (+0.0422) |
532
+ | 2.0939 | 10300 | 2.0312 | 2.0782 | 0.5188 (-0.0216) | 0.3783 (+0.0533) | 0.6282 (+0.1275) | 0.5085 (+0.0531) |
533
+ | 2.1143 | 10400 | 2.0307 | 2.0773 | 0.5011 (-0.0393) | 0.3768 (+0.0517) | 0.6125 (+0.1118) | 0.4968 (+0.0414) |
534
+ | 2.1346 | 10500 | 2.0425 | 2.0779 | 0.5203 (-0.0201) | 0.3796 (+0.0545) | 0.6380 (+0.1373) | 0.5126 (+0.0572) |
535
+ | 2.1549 | 10600 | 2.0441 | 2.0793 | 0.5256 (-0.0148) | 0.3671 (+0.0421) | 0.6091 (+0.1085) | 0.5006 (+0.0453) |
536
+ | 2.1752 | 10700 | 2.046 | 2.0786 | 0.5220 (-0.0184) | 0.3836 (+0.0585) | 0.6237 (+0.1231) | 0.5097 (+0.0544) |
537
+ | 2.1956 | 10800 | 2.0384 | 2.0763 | 0.5089 (-0.0315) | 0.3791 (+0.0541) | 0.6307 (+0.1300) | 0.5062 (+0.0509) |
538
+ | 2.2159 | 10900 | 2.0373 | 2.0787 | 0.5019 (-0.0386) | 0.3699 (+0.0448) | 0.6322 (+0.1316) | 0.5013 (+0.0459) |
539
+ | 2.2362 | 11000 | 2.0377 | 2.0772 | 0.5220 (-0.0184) | 0.3697 (+0.0447) | 0.5991 (+0.0984) | 0.4969 (+0.0416) |
540
+ | 2.2566 | 11100 | 2.0422 | 2.0766 | 0.5232 (-0.0173) | 0.3803 (+0.0552) | 0.6249 (+0.1243) | 0.5094 (+0.0541) |
541
+ | 2.2769 | 11200 | 2.0412 | 2.0763 | 0.5138 (-0.0266) | 0.3739 (+0.0489) | 0.5752 (+0.0746) | 0.4877 (+0.0323) |
542
+ | 2.2972 | 11300 | 2.0411 | 2.0777 | 0.5240 (-0.0164) | 0.3728 (+0.0478) | 0.6340 (+0.1334) | 0.5103 (+0.0549) |
543
+ | 2.3175 | 11400 | 2.0392 | 2.0770 | 0.5093 (-0.0312) | 0.3638 (+0.0387) | 0.5971 (+0.0965) | 0.4901 (+0.0347) |
544
+ | 2.3379 | 11500 | 2.0346 | 2.0798 | 0.5061 (-0.0343) | 0.3748 (+0.0497) | 0.6418 (+0.1412) | 0.5076 (+0.0522) |
545
+ | 2.3582 | 11600 | 2.0501 | 2.0772 | 0.5231 (-0.0173) | 0.3734 (+0.0483) | 0.6018 (+0.1012) | 0.4994 (+0.0441) |
546
+ | 2.3785 | 11700 | 2.0488 | 2.0787 | 0.4924 (-0.0480) | 0.3830 (+0.0580) | 0.6310 (+0.1304) | 0.5021 (+0.0468) |
547
+ | 2.3989 | 11800 | 2.0407 | 2.0752 | 0.5073 (-0.0332) | 0.3853 (+0.0602) | 0.6053 (+0.1046) | 0.4993 (+0.0439) |
548
+ | 2.4192 | 11900 | 2.039 | 2.0793 | 0.5047 (-0.0357) | 0.3815 (+0.0565) | 0.6049 (+0.1042) | 0.4970 (+0.0417) |
549
+ | 2.4395 | 12000 | 2.0405 | 2.0762 | 0.4999 (-0.0405) | 0.3797 (+0.0547) | 0.6229 (+0.1222) | 0.5009 (+0.0455) |
550
+ | 2.4598 | 12100 | 2.0422 | 2.0773 | 0.5257 (-0.0147) | 0.3741 (+0.0490) | 0.6304 (+0.1297) | 0.5100 (+0.0547) |
551
+ | 2.4802 | 12200 | 2.0395 | 2.0787 | 0.5189 (-0.0215) | 0.3614 (+0.0364) | 0.6396 (+0.1389) | 0.5066 (+0.0513) |
552
+ | 2.5005 | 12300 | 2.0357 | 2.0800 | 0.4991 (-0.0413) | 0.3693 (+0.0442) | 0.6140 (+0.1133) | 0.4941 (+0.0387) |
553
+ | 2.5208 | 12400 | 2.0449 | 2.0766 | 0.4701 (-0.0704) | 0.3703 (+0.0453) | 0.6154 (+0.1147) | 0.4852 (+0.0299) |
554
+ | 2.5412 | 12500 | 2.0362 | 2.0765 | 0.4795 (-0.0609) | 0.3794 (+0.0543) | 0.6068 (+0.1062) | 0.4886 (+0.0332) |
555
+ | 2.5615 | 12600 | 2.0357 | 2.0774 | 0.4893 (-0.0511) | 0.3635 (+0.0385) | 0.6128 (+0.1121) | 0.4885 (+0.0332) |
556
+ | 2.5818 | 12700 | 2.0478 | 2.0793 | 0.4924 (-0.0481) | 0.3738 (+0.0488) | 0.6028 (+0.1022) | 0.4897 (+0.0343) |
557
+ | 2.6022 | 12800 | 2.0378 | 2.0777 | 0.5023 (-0.0381) | 0.3667 (+0.0417) | 0.6150 (+0.1144) | 0.4947 (+0.0393) |
558
+ | 2.6225 | 12900 | 2.0377 | 2.0787 | 0.5118 (-0.0286) | 0.3709 (+0.0459) | 0.6317 (+0.1310) | 0.5048 (+0.0494) |
559
+ | 2.6428 | 13000 | 2.0392 | 2.0791 | 0.5099 (-0.0305) | 0.3829 (+0.0579) | 0.6300 (+0.1293) | 0.5076 (+0.0522) |
560
+ | 2.6631 | 13100 | 2.0367 | 2.0786 | 0.5189 (-0.0215) | 0.3890 (+0.0639) | 0.6537 (+0.1530) | 0.5205 (+0.0651) |
561
+ | 2.6835 | 13200 | 2.0431 | 2.0771 | 0.4851 (-0.0553) | 0.3682 (+0.0431) | 0.6240 (+0.1234) | 0.4924 (+0.0371) |
562
+ | 2.7038 | 13300 | 2.0392 | 2.0793 | 0.5057 (-0.0347) | 0.3841 (+0.0590) | 0.6380 (+0.1373) | 0.5092 (+0.0539) |
563
+ | 2.7241 | 13400 | 2.0443 | 2.0767 | 0.4739 (-0.0665) | 0.3669 (+0.0418) | 0.6151 (+0.1145) | 0.4853 (+0.0299) |
564
+ | 2.7445 | 13500 | 2.0501 | 2.0773 | 0.4633 (-0.0771) | 0.3543 (+0.0293) | 0.6069 (+0.1063) | 0.4748 (+0.0195) |
565
+ | 2.7648 | 13600 | 2.0321 | 2.0780 | 0.4930 (-0.0474) | 0.3644 (+0.0394) | 0.6082 (+0.1075) | 0.4885 (+0.0332) |
566
+ | 2.7851 | 13700 | 2.0273 | 2.0786 | 0.4572 (-0.0832) | 0.3653 (+0.0402) | 0.6065 (+0.1058) | 0.4763 (+0.0210) |
567
+ | 2.8054 | 13800 | 2.0326 | 2.0776 | 0.4665 (-0.0739) | 0.3709 (+0.0459) | 0.5942 (+0.0936) | 0.4772 (+0.0218) |
568
+ | 2.8258 | 13900 | 2.0489 | 2.0769 | 0.4748 (-0.0657) | 0.3716 (+0.0466) | 0.5893 (+0.0886) | 0.4785 (+0.0232) |
569
+ | 2.8461 | 14000 | 2.0442 | 2.0775 | 0.5012 (-0.0392) | 0.3711 (+0.0460) | 0.5988 (+0.0981) | 0.4903 (+0.0350) |
570
+ | 2.8664 | 14100 | 2.0365 | 2.0779 | 0.4766 (-0.0639) | 0.3759 (+0.0508) | 0.5890 (+0.0884) | 0.4805 (+0.0251) |
571
+ | 2.8868 | 14200 | 2.0334 | 2.0771 | 0.4703 (-0.0701) | 0.3729 (+0.0478) | 0.5817 (+0.0810) | 0.4749 (+0.0196) |
572
+ | 2.9071 | 14300 | 2.037 | 2.0777 | 0.4868 (-0.0536) | 0.3748 (+0.0498) | 0.6002 (+0.0996) | 0.4873 (+0.0319) |
573
+ | 2.9274 | 14400 | 2.0465 | 2.0775 | 0.4884 (-0.0520) | 0.3658 (+0.0408) | 0.6351 (+0.1345) | 0.4965 (+0.0411) |
574
+ | 2.9478 | 14500 | 2.0314 | 2.0779 | 0.4955 (-0.0449) | 0.3627 (+0.0377) | 0.6120 (+0.1114) | 0.4901 (+0.0347) |
575
+ | 2.9681 | 14600 | 2.0436 | 2.0776 | 0.5073 (-0.0331) | 0.3639 (+0.0389) | 0.5965 (+0.0958) | 0.4892 (+0.0339) |
576
+ | 2.9884 | 14700 | 2.0382 | 2.0771 | 0.4987 (-0.0417) | 0.3728 (+0.0477) | 0.6041 (+0.1034) | 0.4919 (+0.0365) |
577
+ | 3.0087 | 14800 | 2.0339 | 2.0793 | 0.4615 (-0.0789) | 0.3673 (+0.0423) | 0.5634 (+0.0628) | 0.4641 (+0.0087) |
578
+ | 3.0291 | 14900 | 2.0197 | 2.0827 | 0.4515 (-0.0889) | 0.3683 (+0.0433) | 0.5774 (+0.0767) | 0.4658 (+0.0104) |
579
+ | 3.0494 | 15000 | 2.0155 | 2.0809 | 0.4226 (-0.1178) | 0.3684 (+0.0434) | 0.5542 (+0.0536) | 0.4484 (-0.0069) |
580
+ | 3.0697 | 15100 | 2.0157 | 2.0833 | 0.4044 (-0.1360) | 0.3721 (+0.0471) | 0.5168 (+0.0162) | 0.4311 (-0.0242) |
581
+ | 3.0901 | 15200 | 2.0132 | 2.0821 | 0.4341 (-0.1064) | 0.3650 (+0.0400) | 0.5546 (+0.0539) | 0.4512 (-0.0041) |
582
+ | 3.1104 | 15300 | 2.0201 | 2.0829 | 0.4324 (-0.1081) | 0.3527 (+0.0277) | 0.5693 (+0.0687) | 0.4515 (-0.0039) |
583
+ | 3.1307 | 15400 | 2.0219 | 2.0816 | 0.4606 (-0.0798) | 0.3623 (+0.0373) | 0.5450 (+0.0443) | 0.4560 (+0.0006) |
584
+ | 3.1510 | 15500 | 2.0189 | 2.0821 | 0.4729 (-0.0675) | 0.3579 (+0.0328) | 0.5762 (+0.0756) | 0.4690 (+0.0136) |
585
+ | 3.1714 | 15600 | 2.0126 | 2.0831 | 0.4415 (-0.0989) | 0.3503 (+0.0253) | 0.5613 (+0.0606) | 0.4510 (-0.0043) |
586
+ | 3.1917 | 15700 | 2.0201 | 2.0843 | 0.4552 (-0.0852) | 0.3488 (+0.0238) | 0.5897 (+0.0891) | 0.4646 (+0.0092) |
587
+ | 3.2120 | 15800 | 2.0189 | 2.0850 | 0.4860 (-0.0544) | 0.3520 (+0.0270) | 0.5931 (+0.0924) | 0.4770 (+0.0217) |
588
+ | 3.2324 | 15900 | 2.0196 | 2.0827 | 0.4668 (-0.0736) | 0.3485 (+0.0235) | 0.5721 (+0.0715) | 0.4625 (+0.0071) |
589
+ | 3.2527 | 16000 | 2.0195 | 2.0831 | 0.4649 (-0.0756) | 0.3522 (+0.0272) | 0.5928 (+0.0921) | 0.4699 (+0.0146) |
590
+ | 3.2730 | 16100 | 2.0197 | 2.0830 | 0.4790 (-0.0614) | 0.3549 (+0.0298) | 0.5798 (+0.0792) | 0.4712 (+0.0159) |
591
+ | 3.2934 | 16200 | 2.0253 | 2.0824 | 0.4680 (-0.0725) | 0.3633 (+0.0383) | 0.5854 (+0.0848) | 0.4722 (+0.0169) |
592
+ | 3.3137 | 16300 | 2.0244 | 2.0844 | 0.4810 (-0.0594) | 0.3678 (+0.0427) | 0.5862 (+0.0855) | 0.4783 (+0.0230) |
593
+ | 3.3340 | 16400 | 2.0164 | 2.0844 | 0.4550 (-0.0854) | 0.3614 (+0.0364) | 0.5888 (+0.0881) | 0.4684 (+0.0130) |
594
+ | 3.3543 | 16500 | 2.0065 | 2.0835 | 0.5012 (-0.0392) | 0.3629 (+0.0379) | 0.6218 (+0.1212) | 0.4953 (+0.0399) |
595
+ | 3.3747 | 16600 | 2.02 | 2.0830 | 0.4915 (-0.0489) | 0.3518 (+0.0267) | 0.5898 (+0.0891) | 0.4777 (+0.0223) |
596
+ | 3.3950 | 16700 | 2.0213 | 2.0842 | 0.4778 (-0.0627) | 0.3605 (+0.0354) | 0.5656 (+0.0649) | 0.4679 (+0.0126) |
597
+ | 3.4153 | 16800 | 2.02 | 2.0842 | 0.4533 (-0.0871) | 0.3663 (+0.0412) | 0.5447 (+0.0440) | 0.4548 (-0.0006) |
598
+ | 3.4357 | 16900 | 2.0178 | 2.0859 | 0.4510 (-0.0894) | 0.3620 (+0.0369) | 0.5665 (+0.0658) | 0.4598 (+0.0044) |
599
+ | 3.4560 | 17000 | 2.0154 | 2.0849 | 0.4662 (-0.0742) | 0.3673 (+0.0422) | 0.5558 (+0.0552) | 0.4631 (+0.0077) |
600
+ | 3.4763 | 17100 | 2.0145 | 2.0842 | 0.4698 (-0.0706) | 0.3511 (+0.0261) | 0.5797 (+0.0790) | 0.4669 (+0.0115) |
601
+ | 3.4966 | 17200 | 2.019 | 2.0845 | 0.4305 (-0.1099) | 0.3659 (+0.0409) | 0.5614 (+0.0607) | 0.4526 (-0.0028) |
602
+ | 3.5170 | 17300 | 2.0151 | 2.0843 | 0.4671 (-0.0733) | 0.3644 (+0.0394) | 0.5810 (+0.0804) | 0.4708 (+0.0155) |
603
+ | 3.5373 | 17400 | 2.0131 | 2.0844 | 0.4711 (-0.0693) | 0.3579 (+0.0329) | 0.5760 (+0.0754) | 0.4684 (+0.0130) |
604
+ | 3.5576 | 17500 | 2.0145 | 2.0822 | 0.4687 (-0.0717) | 0.3588 (+0.0338) | 0.5853 (+0.0847) | 0.4709 (+0.0156) |
605
+ | 3.5780 | 17600 | 2.0184 | 2.0840 | 0.4723 (-0.0682) | 0.3530 (+0.0279) | 0.5898 (+0.0891) | 0.4717 (+0.0163) |
606
+ | 3.5983 | 17700 | 2.0219 | 2.0839 | 0.4657 (-0.0748) | 0.3538 (+0.0288) | 0.5897 (+0.0890) | 0.4697 (+0.0144) |
607
+ | 3.6186 | 17800 | 2.0186 | 2.0842 | 0.4466 (-0.0938) | 0.3542 (+0.0292) | 0.5779 (+0.0773) | 0.4596 (+0.0042) |
608
+ | 3.6390 | 17900 | 2.0097 | 2.0843 | 0.4828 (-0.0577) | 0.3607 (+0.0357) | 0.5720 (+0.0713) | 0.4718 (+0.0164) |
609
+ | 3.6593 | 18000 | 2.0208 | 2.0844 | 0.4724 (-0.0680) | 0.3644 (+0.0394) | 0.5634 (+0.0627) | 0.4667 (+0.0114) |
610
+ | 3.6796 | 18100 | 2.0254 | 2.0839 | 0.5004 (-0.0400) | 0.3675 (+0.0425) | 0.5854 (+0.0848) | 0.4844 (+0.0291) |
611
+ | 3.6999 | 18200 | 2.0205 | 2.0852 | 0.4712 (-0.0692) | 0.3729 (+0.0479) | 0.5775 (+0.0769) | 0.4739 (+0.0185) |
612
+ | 3.7203 | 18300 | 2.0213 | 2.0856 | 0.4849 (-0.0555) | 0.3645 (+0.0395) | 0.5771 (+0.0765) | 0.4755 (+0.0201) |
613
+ | 3.7406 | 18400 | 2.0321 | 2.0850 | 0.4516 (-0.0889) | 0.3621 (+0.0371) | 0.5578 (+0.0571) | 0.4571 (+0.0018) |
614
+ | 3.7609 | 18500 | 2.0256 | 2.0832 | 0.4442 (-0.0962) | 0.3710 (+0.0460) | 0.5593 (+0.0587) | 0.4582 (+0.0028) |
615
+ | 3.7813 | 18600 | 2.0178 | 2.0846 | 0.4536 (-0.0869) | 0.3689 (+0.0439) | 0.5854 (+0.0847) | 0.4693 (+0.0139) |
616
+ | 3.8016 | 18700 | 2.0156 | 2.0842 | 0.4469 (-0.0935) | 0.3620 (+0.0370) | 0.5622 (+0.0615) | 0.4570 (+0.0017) |
617
+ | 3.8219 | 18800 | 2.0202 | 2.0836 | 0.4712 (-0.0692) | 0.3690 (+0.0439) | 0.5732 (+0.0726) | 0.4711 (+0.0158) |
618
+ | 3.8422 | 18900 | 2.0157 | 2.0838 | 0.4609 (-0.0796) | 0.3508 (+0.0258) | 0.5849 (+0.0842) | 0.4655 (+0.0101) |
619
+ | 3.8626 | 19000 | 2.0139 | 2.0856 | 0.4356 (-0.1048) | 0.3519 (+0.0269) | 0.5631 (+0.0624) | 0.4502 (-0.0052) |
620
+ | 3.8829 | 19100 | 2.0227 | 2.0832 | 0.4603 (-0.0802) | 0.3592 (+0.0342) | 0.5955 (+0.0948) | 0.4717 (+0.0163) |
621
+ | 3.9032 | 19200 | 2.0184 | 2.0840 | 0.4684 (-0.0720) | 0.3562 (+0.0312) | 0.5860 (+0.0853) | 0.4702 (+0.0148) |
622
+ | 3.9236 | 19300 | 2.0271 | 2.0832 | 0.4545 (-0.0860) | 0.3635 (+0.0385) | 0.5709 (+0.0703) | 0.4630 (+0.0076) |
623
+ | 3.9439 | 19400 | 2.0283 | 2.0834 | 0.4524 (-0.0880) | 0.3569 (+0.0318) | 0.5711 (+0.0704) | 0.4601 (+0.0047) |
624
+ | 3.9642 | 19500 | 2.0148 | 2.0836 | 0.4536 (-0.0869) | 0.3556 (+0.0306) | 0.5735 (+0.0728) | 0.4609 (+0.0055) |
625
+ | 3.9845 | 19600 | 2.021 | 2.0841 | 0.4660 (-0.0744) | 0.3563 (+0.0313) | 0.5622 (+0.0615) | 0.4615 (+0.0061) |
626
+ | 4.0049 | 19700 | 2.0185 | 2.0835 | 0.4452 (-0.0952) | 0.3613 (+0.0363) | 0.5338 (+0.0332) | 0.4468 (-0.0086) |
627
+ | 4.0252 | 19800 | 2.005 | 2.0859 | 0.4500 (-0.0904) | 0.3582 (+0.0332) | 0.5490 (+0.0484) | 0.4524 (-0.0029) |
628
+ | 4.0455 | 19900 | 2.0078 | 2.0864 | 0.4131 (-0.1273) | 0.3477 (+0.0227) | 0.5343 (+0.0337) | 0.4317 (-0.0237) |
629
+ | 4.0659 | 20000 | 2.0096 | 2.0861 | 0.4120 (-0.1285) | 0.3549 (+0.0299) | 0.5329 (+0.0322) | 0.4332 (-0.0221) |
630
+ | 4.0862 | 20100 | 2.009 | 2.0875 | 0.4151 (-0.1253) | 0.3475 (+0.0224) | 0.5105 (+0.0098) | 0.4243 (-0.0310) |
631
+ | 4.1065 | 20200 | 2.0131 | 2.0869 | 0.4550 (-0.0854) | 0.3499 (+0.0248) | 0.5395 (+0.0389) | 0.4481 (-0.0072) |
632
+ | 4.1269 | 20300 | 2.0067 | 2.0873 | 0.4371 (-0.1033) | 0.3471 (+0.0221) | 0.5333 (+0.0326) | 0.4392 (-0.0162) |
633
+ | 4.1472 | 20400 | 2.0032 | 2.0883 | 0.4493 (-0.0912) | 0.3542 (+0.0291) | 0.5173 (+0.0167) | 0.4403 (-0.0151) |
634
+ | 4.1675 | 20500 | 2.0077 | 2.0889 | 0.4513 (-0.0892) | 0.3424 (+0.0173) | 0.5270 (+0.0263) | 0.4402 (-0.0152) |
635
+ | 4.1878 | 20600 | 2.0103 | 2.0865 | 0.4426 (-0.0978) | 0.3388 (+0.0138) | 0.5171 (+0.0164) | 0.4328 (-0.0225) |
636
+ | 4.2082 | 20700 | 2.0067 | 2.0872 | 0.4429 (-0.0976) | 0.3445 (+0.0194) | 0.4934 (-0.0073) | 0.4269 (-0.0285) |
637
+ | 4.2285 | 20800 | 2.0058 | 2.0877 | 0.4382 (-0.1022) | 0.3469 (+0.0219) | 0.5075 (+0.0069) | 0.4309 (-0.0245) |
638
+ | 4.2488 | 20900 | 2.0117 | 2.0884 | 0.4319 (-0.1085) | 0.3432 (+0.0182) | 0.5178 (+0.0172) | 0.4310 (-0.0244) |
639
+ | 4.2692 | 21000 | 2.0143 | 2.0872 | 0.4122 (-0.1282) | 0.3396 (+0.0146) | 0.5132 (+0.0126) | 0.4217 (-0.0337) |
640
+ | 4.2895 | 21100 | 2.0108 | 2.0875 | 0.4333 (-0.1071) | 0.3484 (+0.0233) | 0.5300 (+0.0293) | 0.4372 (-0.0182) |
641
+ | 4.3098 | 21200 | 2.0104 | 2.0879 | 0.4051 (-0.1353) | 0.3561 (+0.0311) | 0.5248 (+0.0242) | 0.4287 (-0.0267) |
642
+ | 4.3301 | 21300 | 2.0188 | 2.0871 | 0.4072 (-0.1332) | 0.3533 (+0.0282) | 0.5204 (+0.0198) | 0.4270 (-0.0284) |
643
+ | 4.3505 | 21400 | 2.0051 | 2.0878 | 0.4469 (-0.0935) | 0.3536 (+0.0285) | 0.5331 (+0.0324) | 0.4445 (-0.0109) |
644
+ | 4.3708 | 21500 | 2.0109 | 2.0873 | 0.4213 (-0.1191) | 0.3501 (+0.0250) | 0.5313 (+0.0306) | 0.4342 (-0.0212) |
645
+ | 4.3911 | 21600 | 2.006 | 2.0872 | 0.4388 (-0.1017) | 0.3515 (+0.0265) | 0.5109 (+0.0103) | 0.4337 (-0.0216) |
646
+ | 4.4115 | 21700 | 2.0123 | 2.0878 | 0.4168 (-0.1236) | 0.3567 (+0.0316) | 0.5057 (+0.0051) | 0.4264 (-0.0290) |
647
+ | 4.4318 | 21800 | 2.0092 | 2.0891 | 0.4030 (-0.1375) | 0.3562 (+0.0312) | 0.5083 (+0.0076) | 0.4225 (-0.0329) |
648
+ | 4.4521 | 21900 | 2.0045 | 2.0887 | 0.4159 (-0.1245) | 0.3503 (+0.0253) | 0.5123 (+0.0117) | 0.4262 (-0.0292) |
649
+ | 4.4725 | 22000 | 2.0178 | 2.0861 | 0.4375 (-0.1029) | 0.3559 (+0.0308) | 0.5314 (+0.0307) | 0.4416 (-0.0138) |
650
+ | 4.4928 | 22100 | 2.0145 | 2.0881 | 0.4408 (-0.0996) | 0.3617 (+0.0366) | 0.5040 (+0.0033) | 0.4355 (-0.0199) |
651
+ | 4.5131 | 22200 | 2.0025 | 2.0882 | 0.4291 (-0.1113) | 0.3592 (+0.0341) | 0.5233 (+0.0226) | 0.4372 (-0.0182) |
652
+ | 4.5334 | 22300 | 2.0113 | 2.0892 | 0.4253 (-0.1151) | 0.3569 (+0.0318) | 0.5032 (+0.0025) | 0.4285 (-0.0269) |
653
+ | 4.5538 | 22400 | 2.0167 | 2.0883 | 0.4236 (-0.1169) | 0.3543 (+0.0292) | 0.5218 (+0.0211) | 0.4332 (-0.0222) |
654
+ | 4.5741 | 22500 | 2.0103 | 2.0881 | 0.4151 (-0.1254) | 0.3611 (+0.0360) | 0.5097 (+0.0090) | 0.4286 (-0.0268) |
655
+ | 4.5944 | 22600 | 2.0072 | 2.0865 | 0.4143 (-0.1261) | 0.3554 (+0.0304) | 0.5245 (+0.0239) | 0.4314 (-0.0240) |
656
+ | 4.6148 | 22700 | 2.0001 | 2.0871 | 0.4091 (-0.1313) | 0.3575 (+0.0325) | 0.5231 (+0.0225) | 0.4299 (-0.0254) |
657
+ | 4.6351 | 22800 | 2.0078 | 2.0881 | 0.4099 (-0.1306) | 0.3501 (+0.0250) | 0.5151 (+0.0145) | 0.4250 (-0.0303) |
658
+ | 4.6554 | 22900 | 2.0003 | 2.0878 | 0.4104 (-0.1300) | 0.3460 (+0.0210) | 0.5290 (+0.0284) | 0.4285 (-0.0269) |
659
+ | 4.6757 | 23000 | 2.0152 | 2.0877 | 0.4269 (-0.1135) | 0.3495 (+0.0245) | 0.5259 (+0.0253) | 0.4341 (-0.0212) |
660
+ | 4.6961 | 23100 | 2.011 | 2.0881 | 0.4442 (-0.0962) | 0.3516 (+0.0266) | 0.5347 (+0.0341) | 0.4435 (-0.0118) |
661
+ | 4.7164 | 23200 | 2.0012 | 2.0884 | 0.4324 (-0.1081) | 0.3498 (+0.0247) | 0.5252 (+0.0245) | 0.4358 (-0.0196) |
662
+ | 4.7367 | 23300 | 2.0176 | 2.0876 | 0.4238 (-0.1166) | 0.3510 (+0.0260) | 0.5339 (+0.0333) | 0.4363 (-0.0191) |
663
+ | 4.7571 | 23400 | 2.0063 | 2.0884 | 0.4280 (-0.1125) | 0.3546 (+0.0295) | 0.5347 (+0.0341) | 0.4391 (-0.0163) |
664
+ | 4.7774 | 23500 | 2.0049 | 2.0884 | 0.4358 (-0.1047) | 0.3497 (+0.0247) | 0.5300 (+0.0293) | 0.4385 (-0.0169) |
665
+ | 4.7977 | 23600 | 2.0078 | 2.0873 | 0.4194 (-0.1211) | 0.3508 (+0.0257) | 0.5396 (+0.0390) | 0.4366 (-0.0188) |
666
+ | 4.8181 | 23700 | 2.0143 | 2.0875 | 0.4268 (-0.1137) | 0.3568 (+0.0318) | 0.5266 (+0.0260) | 0.4367 (-0.0186) |
667
+ | 4.8384 | 23800 | 2.0162 | 2.0872 | 0.4271 (-0.1133) | 0.3525 (+0.0274) | 0.5331 (+0.0325) | 0.4376 (-0.0178) |
668
+ | 4.8587 | 23900 | 2.0089 | 2.0879 | 0.4297 (-0.1107) | 0.3512 (+0.0262) | 0.5241 (+0.0235) | 0.4350 (-0.0203) |
669
+ | 4.8790 | 24000 | 1.9988 | 2.0879 | 0.4273 (-0.1131) | 0.3481 (+0.0231) | 0.5238 (+0.0231) | 0.4331 (-0.0223) |
670
+ | 4.8994 | 24100 | 2.0074 | 2.0881 | 0.4362 (-0.1042) | 0.3519 (+0.0269) | 0.5283 (+0.0276) | 0.4388 (-0.0166) |
671
+ | 4.9197 | 24200 | 2.0179 | 2.0878 | 0.4362 (-0.1042) | 0.3473 (+0.0223) | 0.5285 (+0.0279) | 0.4373 (-0.0180) |
672
+ | 4.9400 | 24300 | 2.0162 | 2.0874 | 0.4228 (-0.1176) | 0.3495 (+0.0245) | 0.5348 (+0.0341) | 0.4357 (-0.0197) |
673
+ | 4.9604 | 24400 | 1.9986 | 2.0874 | 0.4268 (-0.1136) | 0.3493 (+0.0242) | 0.5364 (+0.0358) | 0.4375 (-0.0179) |
674
+ | 4.9807 | 24500 | 2.0158 | 2.0874 | 0.4331 (-0.1074) | 0.3515 (+0.0265) | 0.5379 (+0.0373) | 0.4408 (-0.0145) |
675
+ | -1 | -1 | - | - | 0.6012 (+0.0607) | 0.4065 (+0.0815) | 0.7061 (+0.2055) | 0.5713 (+0.1159) |
676
+
677
+ * The bold row denotes the saved checkpoint.
678
+ </details>
679
+
680
+ ### Framework Versions
681
+ - Python: 3.10.18
682
+ - Sentence Transformers: 5.0.0
683
+ - Transformers: 4.56.0.dev0
684
+ - PyTorch: 2.7.1+cu126
685
+ - Accelerate: 1.9.0
686
+ - Datasets: 4.0.0
687
+ - Tokenizers: 0.21.4
688
+
689
+ ## Citation
690
+
691
+ ### BibTeX
692
+
693
+ #### Sentence Transformers
694
+ ```bibtex
695
+ @inproceedings{reimers-2019-sentence-bert,
696
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
697
+ author = "Reimers, Nils and Gurevych, Iryna",
698
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
699
+ month = "11",
700
+ year = "2019",
701
+ publisher = "Association for Computational Linguistics",
702
+ url = "https://arxiv.org/abs/1908.10084",
703
+ }
704
+ ```
705
+
706
+ #### ListNetLoss
707
+ ```bibtex
708
+ @inproceedings{cao2007learning,
709
+ title={Learning to Rank: From Pairwise Approach to Listwise Approach},
710
+ author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
711
+ booktitle={Proceedings of the 24th international conference on Machine learning},
712
+ pages={129--136},
713
+ year={2007}
714
+ }
715
+ ```
716
+
717
+ <!--
718
+ ## Glossary
719
+
720
+ *Clearly define terms in order to be accessible across audiences.*
721
+ -->
722
+
723
+ <!--
724
+ ## Model Card Authors
725
+
726
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
727
+ -->
728
+
729
+ <!--
730
+ ## Model Card Contact
731
+
732
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
733
+ -->
config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertForSequenceClassification"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 50281,
8
+ "causal_mask": false,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "mean",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50282,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "gradient_checkpointing": false,
21
+ "hidden_activation": "gelu",
22
+ "hidden_size": 1024,
23
+ "id2label": {
24
+ "0": "LABEL_0"
25
+ },
26
+ "initializer_cutoff_factor": 2.0,
27
+ "initializer_range": 0.02,
28
+ "intermediate_size": 2624,
29
+ "is_causal": false,
30
+ "label2id": {
31
+ "LABEL_0": 0
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "local_attention": 128,
35
+ "local_rope_theta": 160000.0,
36
+ "max_position_embeddings": 7999,
37
+ "mlp_bias": false,
38
+ "mlp_dropout": 0.0,
39
+ "model_type": "modernbert",
40
+ "norm_bias": false,
41
+ "norm_eps": 1e-05,
42
+ "num_attention_heads": 16,
43
+ "num_hidden_layers": 28,
44
+ "pad_token_id": 50283,
45
+ "position_embedding_type": "sans_pos",
46
+ "repad_logits_with_grad": false,
47
+ "sentence_transformers": {
48
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
49
+ "version": "5.0.0"
50
+ },
51
+ "sep_token_id": 50282,
52
+ "sparse_pred_ignore_index": -100,
53
+ "sparse_prediction": false,
54
+ "torch_dtype": "float32",
55
+ "transformers_version": "4.56.0.dev0",
56
+ "vocab_size": 50368
57
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbc6e9d6cc46a49c805d90efaf0a8af0659933ef535f9e4373baae76339236bf
3
+ size 1583347532
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 7999,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizerFast",
944
+ "unk_token": "[UNK]"
945
+ }