|  | --- | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | base_model: unsloth/Meta-Llama-3.1-8B-Instruct | 
					
						
						|  | tags: | 
					
						
						|  | - diffusion | 
					
						
						|  | - language-model | 
					
						
						|  | - llama | 
					
						
						|  | - text-generation | 
					
						
						|  | library_name: transformers | 
					
						
						|  | pipeline_tag: text-generation | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Llama-3.1-8B Diffusion Model (LAD) | 
					
						
						|  |  | 
					
						
						|  | This is a **Language Autoregressive Diffusion (LAD)** model based on Llama-3.1-8B-Instruct. | 
					
						
						|  |  | 
					
						
						|  | ## Features | 
					
						
						|  | - 🎯 Dual mode: Autoregressive + Diffusion generation | 
					
						
						|  | - 🚀 Cosine noise schedule with 1000 timesteps | 
					
						
						|  | - 🧠 LoRA fine-tuning (rank 32) | 
					
						
						|  | - ⚡ Custom diffusion components | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from transformers import AutoTokenizer, AutoModelForCausalLM | 
					
						
						|  |  | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained("rootxhacker/llama3-diffusion") | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained("rootxhacker/llama3-diffusion") | 
					
						
						|  |  | 
					
						
						|  | # Generate text | 
					
						
						|  | inputs = tokenizer("The future of AI", return_tensors="pt") | 
					
						
						|  | outputs = model.generate(**inputs, max_length=100) | 
					
						
						|  | print(tokenizer.decode(outputs[0])) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Training Details | 
					
						
						|  | - Base: Meta-Llama-3.1-8B-Instruct | 
					
						
						|  | - Dataset: PatrickHaller/cosmopedia-v2-1B | 
					
						
						|  | - Framework: Unsloth + Custom Diffusion | 
					
						
						|  | - Context: 256 tokens | 
					
						
						|  | - Training: 60% AR + 40% Diffusion | 
					
						
						|  |  | 
					
						
						|  | Uploaded: 2025-06-08 23:13 | 
					
						
						|  |  |